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Abstract— This paper explores the intersection of recent AI
advancements and Intelligent Transportation Systems (ITS),
specifically focusing on enhancing the capabilities of Connected
and Automated Vehicles (CAVs) in dynamic traffic scenarios.
While combinations of vehicular sensors and AI offer promising
prospects for advanced environmental perception, challenges
still persist in accurately identifying dangers during the transi-
tion to automated traffic. The ESRIUM project, funded by the
EU Horizon 2020 Programme, aims to address these challenges
by developing digital maps representing road deterioration
and employing Vehicle-to-Everything (V2X) communication to
generate infrastructure-assisted routing recommendations for
CAVs. While the solutions for sending standardized safety
messages and controlling enabled CAVs were demonstrated in
the ESRIUM project, the solution for the automatic generation
of V2X safety messages was not studied. In this paper, we
propose a pipeline named “ConnectGPT”, which connects
Large Language Models (LLMs) with CAVs, utilizing GPT-
4, to observe traffic conditions, identify conditions that can
endanger the flow of traffic, and automate the generation
of the corresponding standardized V2X messages, such as
Decentralised Environmental Notification Message (DENM)
about the actual safety problem. Practical experiments with
ongoing development show potential for real-world applications,
which can significantly improve traffic management efficiency
and enhance the security of all traffic participants, marking a
crucial advancement in the integration of AI tools in ITS.

I. INTRODUCTION

The recent progress in AI methodologies has opened
up new opportunities for Intelligent Transportation Systems
(ITS). Vehicular sensors are continuously improving, fa-
cilitating the development of Advanced Driver Assistance
Systems (ADAS) or Automated Driving (AD) [1]. The recent
rapid development of Large Language Models (LLMs) and
Vision Foundation Models (VFMs) are new AI tools that
can also assist Connected and Automated Vehicles (CAVs)
in driving themselves by interpreting the environment and
making choices like humans [2].

However, there are still challenges in successfully man-
aging and directing the actions of CAVs in dynamic traffic
situations, especially during the shift from conventional to
automated traffic. An obstacle in the process of obtaining
higher degrees of CAVs is the requirement to accurately
identify potential dangers, plan optimal routes, and make in-
formed choices in diverse situations [3], such as encountering
lane closures or road damage. An Automated Driving System
(ADS) lacking connection with infrastructure or other cars
may face challenges in avoiding maintenance zones on the
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Fig. 1. The world’s first GPT that connects Large Language Models
(LLMs) with Connected Automated Vehicles (CAVs). Our proposed pipeline
can be applied in real-life scenario and has the potential to revolutionize the
Intelligent Transportation System (ITS). ConnectGPT is customized upon
GPT-4 [7]. Logo source: DALL·E 3

road due to the limitations of its deployed sensors in detect-
ing small cones. The vulnerability of perception sensors to
deterioration in adverse weather conditions is apparent. The
inclement weather conditions also have a negative impact on
the Global Navigation Satellite System (GNSS) [4]. Hence,
V2X communication is crucial in attaining advanced levels
of autonomy (SAE Level-4 and Level-5 [5]) since it allows
CAVs to get real-time routing and driving suggestions.

The EU-H2020-funded project ESRIUM [6] draws inspi-
ration from this, with the objective of enhancing the safety
and resource efficiency of transportation on European roads.
This will be achievable by developing a precise digital map
that precisely represents the deterioration and destruction of
road surfaces. The map will be employed to mitigate road
construction and associated problems by efficiently oversee-
ing traffic and regulating route utilization. Furthermore, it
will furnish road operators with useful data for strategizing
maintenance operations. In addition, connected vehicles will
be provided with route and driving suggestions to reduce
road surface deterioration and the frequency of necessary
maintenance measures.

In the ESRIUM project, we have effectively executed
practical experiments involving Vehicle-to-Everything (V2X)
and a CAV on the Austrian road A2. Our CAV demonstration
was thoroughly validated on a functional highway with heavy



traffic and poor weather conditions, testing all operational
autonomous driving capabilities as well as the On-Board
Unit (OBU) and Roadside Unit (RSU). The V2X messages
were generated by the road operator, transmitted to our
CAV demonstrator via the RSU, and received by our OBU,
resulting in the appropriate maneuvering of an SAE Level-3
CAV in complex traffic scenarios.

Although the demonstration was successful, we have
identified opportunities to further optimize the efficiency of
our framework, specifically in regards to managing traffic
hazards and maneuvering CAVs. The road operators are
consistently monitoring the traffic conditions and the state
of the route, including road damage, wear, and traffic ac-
cidents. While there is some automation involved, human
traffic experts are primarily responsible for understanding
and analyzing traffic scenes. A highway spanning hundreds
of kilometers presents challenges in terms of prompt traf-
fic management and necessitates a significant amount of
manpower. Additionally, after a situation is recognized, the
human traffic expert must formulate a request and com-
municate it to software programmers to generate standard
V2X messages. RSU then disseminates these messages to
inform other vehicles of the situation. However, this complex
process presents difficulties in promptly responding to an
unforeseen traffic incident, such as a stone falling onto the
road.

To address this issue, we propose a novel pipeline that
connects LLMs with CAVs, and develop a customized model
called ConnectGPT, which is based on the latest GPT-4
1. ConnectGPT can observe the present traffic conditions,
recognize road deterioration types, and identify dangerous
circumstances. It can then automatically notify the road
operator, who will confirm the information. In addition, it
will automatically generate standard Cooperative Intelligent
Transport Systems (C-ITS) messages for the road operators,
depending on the actual traffic circumstances. ConneeGPT
will significantly enhance the effectiveness of road operations
and facilitate the timely identification of potential risks
for traffic participants. CAVs can utilize the information
produced by ConnectGPT to promptly implement precau-
tionary measures or execute minimal-risk maneuvers, thereby
augmenting the safety and efficiency of the ITS.

As far as we know, we are the first in the world to provide
a pipeline that enables the transfer of data from infrastructure
cameras to connected autonomous vehicles (CAVs) using
LLM and V2X communication. Our pipeline is practical and
readily applicable in real-world scenarios. Although the de-
velopment of the pipeline incorporating ConnectGPT is still
ongoing, we have conducted validation using a small-scale
dataset and a specific form of C-ITS message. Additionally,
there are interesting conclusions that arise, highlighting ways
to optimize our proposed pipeline. Moreover our pipeline
has significant potential to be extended and can increase the
traffic management efficiency as well security of all traffic
participants. .

The rest of this paper is structured as follows: First,
Section II states the state-of-the-art on infrastructure-assisted

CAVs and use of LLMs for connected mobility applica-
tions. Then in Section III the problem statement regarding
establishment of an automated pipeline for generation of
standardized routing recommendations is given, and then in
Section IV our proposed solution approach is presented. The
representative experiments together with the analysis of the
initial results are accordingly presented in Section V, and
finally the outcomes and future directions are stated Section
VI.

II. RELATED WORK

A. Development of CAVs and V2X

The emergence of CAVs and infrastructure-supported au-
tomated driving functions has garnered significant interest
in recent years, as outlined in [4]. Schulte-Tigges et al.
proposed a software architecture and logic for CAVs that
effectively utilizes hazard notification and road signage in-
formation from V2X messages [8]. This approach allows for
the management of Operational Design Domain (ODD) deci-
sions and reactions in a predictable manner. Their proposed
software architecture incorporates a maneuver planner that
utilizes separate state machines to respond to various types
of V2X information. The system generates target objectives
for a motion planner and path controller. When compared to
a basic autonomous vehicle (AV) model that only relies on
sensors on board, the simulations show how the presented
CAV solution is better. Furthermore, they conducted real-
world test-track experiments to confirm the usefulness of
the proposed logic. However, the test track is only straight
and without the presence of real traffic scenarios. This
compromised the strength of their validation.

Most recently, practical experiments of V2X and CAV
were conducted on the Austrian route A2 as part of the
ESRIUM project [6]. To our knowledge, there has not
been a comprehensive validation undertaken on a functional
highway that encompasses all operational autonomous driv-
ing capabilities, along with the On-Board Unit (OBU) and
Roadside Unit (RSU). The CAV driving function employed
an adaptive cruise control (ACC) module in conjunction
with a PI controller to either sustain a specified velocity
or a consistent time distance to the preceding vehicle. A
rule-based trajectory planner was used to place Bézier-based
reference paths in a Frenet frame relative to the center of
the current lane to regulate lateral motion. A state feedback
controller based on LQR was responsible for managing the
reference path tracking. To obtain further information on the
control methods, please refer to the following sources: [9]–
[11].

Other recent research on CAVs and V2x has a different
focus. It includes a decentralized protocol for CAVs’ coor-
dination [12], a vehicle-in-the-loop (ViL) test environment
with V2X communication [13], ways to account for the
unique role of infrastructure-assisted collective perception
(ICP) [14], the accuracy and delay of V2X communication
localization [15] and EGNSS-based path tracking [16]



B. Large Language Models for CAVs

Large Language Models (LLMs) show promise in activ-
ities requiring human-like reasoning, such as autonomous
vehicles. Recent improvements have led to increased interest
in Multimodal Large Language Models (MLLMs), which
combine LLMs’ sophisticated reasoning with picture, video,
and audio data [17]. A recent in-depth study looks at the
current state, problems, and future research that is needed for
these LLM-based AI systems in the field of AD [2]. The re-
searchers in the survey paper claim that MLLMs can enhance
driving decision-making, navigation, safety, and efficiency by
understanding traffic scenes, enhancing vehicle planning, and
adapting to changing road conditions. In addition, LLMs can
personalize driving experiences and in-vehicle entertainment,
build trust in autonomous technology, and explain their
actions to passengers. These models can learn from new data
and adapt to driver preferences over time. However, their
work primarily concentrates on the intelligence of individual
vehicles while disregarding the broader scope of ITS and
CAVs, which encompass infrastructural support for AD, V2X
communication, and intelligent traffic management.

The researchers also emphasize the hardware constraints
of implementing LLMs in a single automobile [2]. For
autonomous vehicles to perform driving duties using Large
Language Models (LLMs), these models must make rapid
decisions with minimal latency in order to ensure safety.
Consequently, the utilization of substantial computational
resources in this manner has a direct impact on both
the efficiency and energy consumption of the autonomous
driving system. Conversely, LLMs designed for automobile
navigation, maneuver instruction, and traffic management
may exhibit slower processing speeds and infrequent reliance
on requesting instructions, making them easier for computers
to handle. Consequently, it is acceptable for these LLMs to
operate from the infrastructure side. Moreover, modern V2X
communication technologies provide accurate and effective
long-range connections between infrastructure facilities and
vehicles.

Other studies propose strategies for integrating AI with
CAVs in the context of ITS. In 2019, a review paper
examined multiple AI approaches, including swarm intelli-
gence, natural language processing (NLP), machine learning,
and deep learning, intending to improve the capabilities of
V2X systems [18]. Nevertheless, LLMs were not widely
recognized at that period, and their capacity to enhance V2X
was not a subject of discussion. In 2022, Binisha et al.
provided suggestions about the potential of using AI like
NLP to solve crucial issues in V2X systems, such as ensuring
efficient communication and safety measures for automobiles
on the road [19].

In summary, while there are many discussions around
the application of LLMs in autonomous driving, the actual
implementation in the industry is few. Furthermore, the sig-
nificance of utilizing LLMs to enhance V2X and ITS has not
been extensively explored. This study is a pioneering effort
to integrate LLMs with V2X communication technology

Fig. 2. Implemented scenarios: In-lane offset recommendation (cyan
trajectory) and lane change recommendation (red trajectory).

and present a viable framework that can be immediately
implemented in the existing intelligent traffic management
system. This framework enhances traffic flow efficiency and
promotes safer driving of CAVs.

III. PROBLEM STATEMENT

The primary approach and solution of the EU-H2020-
funded project ESRIUM [6] involve developing and main-
taining a precise digital map that represents the deterioration
of road surfaces using sensor-equipped vehicles. This map is
then utilized to regulate route utilization through simple in-
lane positioning and lane-change maneuvers, as illustrated
in Fig. 2. While ESRIUM successfully conducted practi-
cal public on-road experiments and validated infrastructure-
assisted automated driving functions on the Austrian A2
motorway, the demonstrations also highlighted opportunities
for framework optimization. However, challenges persist in
managing traffic hazards and maneuvering CAVs, going
beyond the road damage identification alone, necessitating
improved automation and prompt response mechanisms for
unforeseen incidents. Notably, the ESRIUM project leaves
unanswered the question of how to generate a standardized
V2X message for an imminent road hazard.

Building upon these initial observations, our current study
is centered on investigating an automated pipeline tailored
for generating standardized V2X messages. Our primary aim
is to effectively alert oncoming CAVs (as well as connected
vehicles in general) about impending dangers. In our method-
ology, we leverage infrastructure sensors, including cameras
and potentially other perception sensors, in conjunction with
a purpose-built LLM serving as a central decision support
tool. These components are utilized to monitor specific road
sections, collecting data on traffic conditions and potential
obstacles that may disrupt traffic flow. Thus, the pivotal
inquiry becomes: How can we establish an automated or
semi-automated system that ensures the timely generation of
standardized V2X safety messages, offering prompt warnings
and guidance to oncoming traffic while ensuring a depend-
able safety guarantee?

IV. OUR APPROACH

Fig.3 illustrates the proposed pipeline that links LLMs
with CAVs in order to decrease the reaction time for event
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Fig. 3. Overview of our proposed pipeline that connects LLMs and CAVs. infrasture-related software and hardware are in red blocks , while the vehicle-
related software and hardware are in green blocks.

management in traffic management and enhance driving
safety and traffic flow efficiency. The following sections will
provide detailed explanations for each block shown in the
illustration.

A. Infrastructure Camera

This block signifies the initial phase, whereby cameras
installed on infrastructure take images of road conditions.
Images such as these are essential for identifying and rec-
ognizing events or hazards on the road. Furthermore, these
infrastructure cameras have been implemented for the pur-
pose of traffic management in Austria. The Austrian test site
AlpLab, situated in the Graz region along the A2 highway
between Graz West and Lassnitzhöhe, exhibits the significant
implementation of cutting-edge infrastructure and sensory
technology. This location spans a distance of 20 kilometers
along the highway and is equipped with advanced and
novel sensing equipment. A network including 26 cameras
is established in both directions of the test location [20].
These cameras are crucial in detecting incidents, enhancing
road safety, and facilitating effective traffic management. The

video cameras record real-time images from various places
and transmit them to ConnectGPT for additional processing.

B. Image Interpretation and C-ITS Message generation by
ConnectGPT

ConnectGPT subsequently analyzes images obtained from
the infrastructure cameras. We have devised several prompts
to acquire the most accurate response. This analysis may
entail examining the images in order to discern certain
situations, such as accidents, road obstructions, or haz-
ardous conditions. After identifying a particular scenario or
potential situation, as depicted in Fig. 3, the connecGPT
system interprets the images and produces C-ITS messages.
In our work, these messages are specifically Decentralized
Environmental Notification Messages (DENM) [21], but our
proposed framework is also applicable to other types of C-
ITS messages.

As seen in the ConnetGPT block of Fig. 3, according to
the standard DENM (ETSI EN 302 637-3) [21], ConnectGPT
analyzes the picture and subsequently outputs the cause
code (10 in the given example) and sub cause code (0 in



the given example). Considering the present circumstances,
ConnectGPT proposes a lane closure on ”110”, indicating
that the first two left lanes are open while the rightmost lane
has been shut off. The generation of C-ITS messages requires
an interaction between ConnectGPT and the road operator.
Furthermore, it is required to do an integrity check by the
road operator on the generated C-ITS message, as there is
a possibility of LLMs making errors. The third block in 3
displays a code snippet of the whole DENM . The message
provides precise information regarding the identified event
or hazard, such as cause codes and driving lane status.

C. V2X communication between RSU and OBU

The RSU program can forward the C-ITS message after
confirming that it is free of syntax errors. V2X communica-
tion encompasses the communication of information between
the vehicle’s OBU and RSU, guaranteeing the widespread
distribution of the message to all pertinent road participants.

The On-Board Unit (OBU) installed in cars receives the
DENM from RSU and analyzes them to deliver notifica-
tions or information to both the driver and the Automated
Driving systems, therefore improving road safety. The ve-
hicleCAPTAIN [15], an OBU along with an open-source
library developed by Virtual Vehicle Research, receives C-
ITS messages and performs message parsing in the first stage
at the vehicle side. Subsequently, the essential information
will be conveyed to the Human-Machine Interface (HMI)
and the interface to the automated driving system.

D. Automated driving system

During the subsequent phase, human drivers get informa-
tion on the state of the road through the Human-Machine
Interface (HMI). The HMI efficiently notifies the driver
of important information, such as speed limits, advice for
changing lanes, or lane offset. Meanwhile, the extracted data
from the C-ITS message is being analyzed. And The parsed
information is then transmitted to a real-time ECU, which
executes the ADAS/AD function, as seen in the HMI and
Interface block in 3.

The AD/ADAS function regulates the vehicle’s longitu-
dinal and lateral movements. The vehicle’s lateral position
is controlled by the lane markings, detected by a commer-
cially available Mobileye camera system. To regulate lateral
motion, a rule-based trajectory planner generates Bézier-
based reference routes in a Frenet frame relative to the
current lane’s midline. Subsequently, the task of navigating
along this reference path was controlled by a LQR-based
state feedback controller. The longitudinal control system
uses an adaptive cruise control (ACC) module and a PI
controller to keep the vehicle at a certain speed or at the
same distance from the vehicle ahead of it. To obtain further
information on the control methods, please refer to the
following sources: [9]–[11].

The test vehicle we are using is designed to execute lane
change or lane-keeping maneuvers, as well as speed adapta-
tion. The test vehicle is a Ford Mondeo Hybrid that has been

equipped with supplementary hardware for environmental
perception, as seen in the vehicle block in Fig. 3.

The original pipeline demonstrated on a real highway
in Austria [22] did not utilize LLMs, so camera images
had to be tediously monitored by traffic engineers, and C-
ITS messages were generated by hand using a professional
software. Our proposed pipeline incorporating ConnectGPT,
on the other hand, lets road operators quickly analyze a
large amount of real-time data from infrastructure cameras
and respond to traffic incidents or dangers. The process of
generating C-ITS messages is also simplified.

In summary, the proposed pipeline presents a holistic
strategy for enhancing road safety and optimizing traffic flow
through the utilization of cutting-edge GPT-4 technology
for instantaneous data analysis, efficient communication, and
seamless interaction with both manually operated vehicles
and connected automated vehicles. As the implementation of
this type of intelligent transportation system becomes more
prevalent in our everyday lives, the advantages of reducing
labor are becoming more evident.

V. EXPERIMENTS AND DISCUSSION

A. Customizing ConnectGPT

Starting on November 6, 2023, OpenAI enables users to
generate customized versions of ChatGPT [7]. It is important
to mention that customization often occurs at the application
level rather than the model level. We formulated the prompts
for GPT-4 and customized ConnectGPT by equipping it with
knowledge from CAV and V2X literature, as well as C-ITS
message standards. In order to enhance the likelihood of
providing the desired response, we employed two sample
photos to ”train” ConnectGPT. ConnectGPT is therefore cus-
tomized to specialize in monitoring present traffic conditions,
recognizing road deterioration, identifying incidents and dan-
gerous circumstances, and promptly notifying road operators
for verification purposes. This specialization involves several
key capabilities: Traffic Condition Monitoring: ConnectGPT
has the capability to continuously monitor current traffic
conditions. This can include tracking traffic flow, detecting
traffic jams, and assessing overall traffic patterns.

• Traffic Condition Monitoring: ConnectGPT has the ca-
pability to continuously monitor current traffic condi-
tions. This can include tracking traffic flow, detecting
traffic jams, and assessing overall traffic patterns.

• Incident and Hazard Detection: ConnectGPT can detect
incidents such as accidents or dangerous conditions on
the road. This could involve real-time analysis of traffic
data, inputs from sensors or cameras, or integration with
emergency reporting systems.

• Standard C-ITS Message Creation: The system is capa-
ble of creating standardized C-ITS messages.

Currently the generation of C-ITS message is not perfect, as
discussed in the next section. But the successfully generated
messages conform to specific formats and protocols to ensure
compatibility for RSU, which can be directly used for V2X
communication. Furthermore, our present study exclusively



examines the DENM and ConnectGPT is used to generate
standard DENM . But in the future work ConnectGPT will
be used in a wider range of traffic management scenarios
and support different types of C-ITS messages. This has the
potential to greatly improve the efficiency of road operations
by enabling the early identification of dangers and allowing
quick responses to potential harm for all participants involved
in traffic.

B. Validation

In order to validate the proposed pipeline, we created a
mini data set of 50 images of traffic scenarios on the highway
at different locations, which ConnectGPT has never seen
before. In the dataset, we have 20 images with incidents
(”positive” in this context) and 30 images without incidents
(”negative” in this context”), which is from camera images
on the highway in Czech Republic originally from the road
damage dataset [23]. And the ConnectGPT shall implement
the following three tasks:

1) Image understanding: As a professional traffic expert,
ConnectGPT is tasked with analyzing uploaded camera
images of a highway to identify any traffic incidents,
hazards, or road damages. ConnectGPT will examine
each image individually and provide interpretations,
clearly indicating which image is being referred to in
each analysis.

2) Information extraction and decision-making: As
a traffic expert, ConnectGPT will analyze uploaded
images to determine the number of lanes on the
highway and suggest lane closures using a binary code
system, where ’0’ indicates a lane to be closed and ’1’
indicates a lane to remain open. Based on the DENM
(ETSI EN 302 637-3) standard [21], ConnectGPT will
identify the causeCode and subCauseCode, save this
information along with the drivingLaneStatus in a CSV
file named after the image, and provide it for download.

3) C-ITS message generation: As a C-ITS message
expert, ConnectGPT will generate a DENM in XML
format based on the contents of an uploaded DENM
example. This task in our current work involves updat-
ing the causeCode, subCauseCode, and drivingLaneS-
tatus, saving the complete XML file without omissions,
and naming the XML file after the uploaded CSV file
for download.

In the following part, we will elaborate on the quantitative
as well as qualitative analysis of our experiment results.

1) Quantitative analysis: The table I shows our experi-
ments conducted with 50 images across very different traffic
scenarios presented on the highway. The restuls are divided
into three main categories, as follows:.

Image Understanding: This task focuses on the system’s
ability to correctly identify incidents in images with a perfect
recall rate, meaning that it identified incidents without false
negatives, and a precision rate of 95% (the only image with
a false negative incident shown in Fig. 4(i)), indicating that
ConnectGPT has high success rates in scene understanding,
and major advantages in incident detection in general.

Information Extraction and Decision-making: This task
deals with extracting information from the images and mak-
ing decisions. ConnectGPT is effective at determining the
number of lanes with a 90% correctness rate. However, its ef-
fectiveness drops significantly when determining the driving
lane status (50%) and is particularly low when determining
the cause code (15%). But a different answer of the cuase
code does not necessariy the answer from ConnectGPT is
not reasonable. We will discuss this phenomenon in detail in
the next section.

Code Generation: The final task involves generating the
content and format of V2X messages. ConnectGPT is fairly
accurate at generating the content, with a 75% correctness
rate but less accurate at determining the correct message
format, with a 55% correctness rate. We also investigate the
cause of the content or syntax issues for C-ITS message
generation. It is because ConnectGPT may lose certain tags
or create additional tags that are not part of the DENM
protocol. Also, it may have difficulty converting a binary
code to a string, such as ”000”.

2) Qualitative analysis: Fig. 4 presents nine exemplary
images from the dataset, each accompanied by human and
GPT-generated responses noted at the bottom. In Fig. V-
B.1, ConnectGPT’s responses are indistinguishable from
human answers. Fig. 4(b) shows ConnectGPT providing the
matching Cause and Sub Cause Code as the human annotator,
though reversing the open and closed lane statuses. In Fig.
4(c), GPT incorrectly identifies the number of lanes—a
challenging task even for humans—and misinterprets a ”shed
load” of white powders as ”snow drift.” Fig. V-B.1 contrasts
the human annotator’s precise identification of ”rockfalls”
as the accident cause with GPT’s broader categorization as
a ”hazardous location - obstacle on the road.” This GPT
response, despite being also correct, is classified as incorrect
in Table I.

Further, in Fig. 4(e), GPT accurately detects ”human pres-
ence on the road,” rather than identifying the more accurate
”hazardous location - surface condition.” A same error is
repeated in Fig.s 4(f), V-B.1, and 4(h), where ConnectGPT
refers to an incorrect C-ITS message standard, despite clear
guidelines in the prompt. Lastly, Fig. 4(i)—the only image
not positively identified by ConnectGPT—presents a sce-
nario that is also initially confounding for humans.

In short, ConnectGPT demonstrates notable capability in
understanding and interpreting images. However, its code
generation is found to be unsatisfactory and unstable, as
discussed in Section V-B.1. Also, it does not perform so
well when choosing a cause code according to a document
for a given traffic scene. Similar to the findings of Chen et
al. in their study on ChatGPT [24], we also experienced the
variability in GPT-4’s performance, which means fluctuations
in the effectiveness of the model over short periods of time.

VI. CONCLUSION AND OUTLOOK

In this paper, we developed an automated pipeline tai-
lored for generating standardized V2X messages for Con-
nected Autonomous Vehicles (CAVs) utilizing ConnectGPT,



TABLE I
QUANTITATIVE ANALYSIS OF OUR EXPERIMENTS WITH 50 TEST IMAGES

Task Image Understanding Information Extraction and Decision-making Code Generation
Sub tasks Incident Detection Number of lanes Driving Lane Status Cause Code V2X Message Content V2X Message format
Metric Recall Precision Correctness Rate Correctness Rate Correctness Rate Correctness Rate Correctness Rate
Result 100% 95% 90% 50% 15% 75% 55%

(a) Human: DLS(10), CC(9), SCC(0),
text(hazardous location - surface condition);
GPT: DLS(10), CC(9), SCC(0), text(hazardous
location - surface condition).

(b) Human: DLS(01), CC(3), SCC(0),
text(”short-term stationary roadworks”); GPT:
DLS(01), CC(3), SCC(0), text(”short-term
stationary roadworks”).

(c) Human: DLS(001), CC(10), SCC(1),
text(”shed load”); GPT: DLS(01), CC(9),
SCC(5), text(”snow drifts”).

(d) Human: DLS(00), CC(9), SCC(1),
text(”rockfalls”); GPT: DLS(00), CC(10),
SCC(0), text(”hazardous location - obstacle on
the road”).

(e) Human: DLS(000), CC(9), SCC(0),
text(”hazardous location - surface condition”);
GPT: DLS(100), CC(12), SCC(0), text(”human
presence on the road”).

(f) Human: DLS(00), CC(11), SCC(0),
text(”hazardous location - animal on the road”);
GPT: DLS(00), CC(91), SCC(0), text(”refering
to another standard”).

(g) Human: DLS(111), CC(18), SCC(1),
text(visibility reduced due to fog); GPT:
DLS(111), CC(7), SCC(0), text(”refering to
another standard”).

(h) Human: DLS(111), CC(18), SCC(6),
text(”visibility reduced due to low sun glare”);
GPT: DLS(111), CC(5), SCC(0), text(”refering
to another standard”).

(i) Human: DLS(101), CC(14), SCC(0),
text(”wrong way driving”); GPT: DLS(111),
CC(0), SCC(0), text(”no incident”).

Fig. 4. Quantatitive analysis of answers of ConnectGPT. DLS stands for Driving Lane Status; CC stands for Cause Code; SCC stands for Sub Cause
Code; the text is the label for each Cause Code with Sub Cause Code in DENM (ETSI EN 302 637-3) standard. The definition of Driving Lane Status is
that’0’ indicates a lane to be closed and ’1’ indicates a lane to remain open [21].

a proof-of-concept test LLM designed for V2X message gen-
eration. Our approach involves the use of infrastructure sen-
sors, demonstrated in this paper specifically for camera im-
ages, in conjunction with ConnectGPT as a central decision
support tool. The proposed pipeline generates standardized
Decentralized Environmental Notification Message (DENM)
messages to effectively alert oncoming CAVs about immi-
nent dangers. Consequently, we analyzed the effectiveness
of such a system in automatically generating safety-related

V2X messages, providing prompt warnings and guidance for
oncoming traffic while ensuring a reliable safety guarantee.

Currently we rely on GPT-4, which is one of the most
powerful and well-trained LLMs, as the main source of the
ConnectGPT. However, it is not sufficiently accurate for our
specific ITS use cases. Current proof-of-concept implemen-
tation suffers from problems such as lacking proprietary
knowledge, the risk of outdated information, and halluci-
nations (e.g., false positives). Our objective is to utilize an



open-source LLM (such as Llama 2 [25]) to further train
ConnectGPT, focusing on a reduced number of parameters
while acquiring more specialized knowledge in the domain
of CAV and ITS. Furthermore, the customized ConnectGPT
will run in a local server at the infrasture side, so the potential
data security concerns can be also addressed.

Future work involves integrating ConnectGPT with our
existing computer vision pipeline for enhanced object detec-
tion, accurate bounding boxes, and estimating the incident
location and orientation. This integration shall aim to en-
rich traffic management decisions with more detailed and
reliable information from ConnectGPT with a possibility
cross-verification of the results from different information
sources. Additionally, we are exploring optimal pipeline
configurations for automated C-ITS message generation, in
tandem with our current manual workflow, to ensure 100%
accuracy in both content and format of the standardized C-
ITS messages. The fully established pipeline, including all
the software and hardware components, will be developed
and put through testing once again on an operating roadway
in Austria.
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