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Abstract—Despite recent advances in algorithms and technol-
ogy, self-driving vehicles are still susceptible to errors that can
have severe consequences. As a result, effective risk monitoring
and mitigation measures for autonomous driving systems are
in high demand. To overcome this issue, several specifications
and standards have been developed. However, a theoretical
framework for dealing with autonomous vehicle hazards has
rarely been presented. This study suggests a risk modeling
method inspired by ideas from control theory and introduces a
Model Predictive Control (MPC) Framework to deal with risks
in general. Two application examples are presented. The first
example shows how MPC parameters may affect the aggressive-
ness of the response. In the second example, our proposed risk
monitoring and mitigation module is integrated into a vision-
based Adaptive Cruise Control (ACC) system. Simulation results
indicate a significant improvement in collision avoidance rate
(from 0% to 47% in edge scenarios) during the Euro NCAP ACC
Car-to-Car tests with a stationary target, which demonstrates the
utility of our approach for addressing various types of hazards
faced by autonomous vehicles.

Index Terms—automated vehicles, model predictive control,
risk monitoring, risk mitigation, functional safety

I. INTRODUCTION

In the automotive industry, automated driving technology
is expected to lead to a paradigm shift in transportation
systems, introduce new business models and improve user
experience. Given the current momentum, it can be assumed
that (highly) automated vehicles will advance continuously.
However, despite tremendous advances in sensor technology,
high-performance computing, deep learning, computer vision,
data fusion techniques, and other systems technologies, bring-
ing a fully automated vehicle (AV) capable of driving unat-
tended in complex and various scenarios is a long-term effort.
To be accepted by drivers and other stakeholders, automated
vehicles must be reliable and much safer than current cars.
However, automated driving technology also introduces new
challenges. New perception algorithms, including machine
learning and sensor fusion, exhibit complex, non-deterministic,

and potentially unpredictable behaviors. Besides, automated
vehicles rely on multiple sensors and computation units, so
hardware imperfections or failures critically impact planning
and decision-making. Those risk factors must be taken into
account and adequately handled.

While automated driving technology has the potential to
alter the way we travel, it also raises serious safety issues.
Automated vehicles must conform to various safety require-
ments to protect the safety of passengers and other road
users. The capacity to monitor safety parameters in real-time
is an essential component of these standards since it allows
for the instant discovery of possible safety dangers and the
opportunity to take remedial action before accidents occur.
Runtime monitoring of safety parameters entails evaluating
several elements of the vehicle’s performance during its op-
eration. In addition to monitoring the vehicle’s position and
speed, it is necessary to check additional safety parameters
during runtime. Risk monitoring employs a combination of
hardware and software components to monitor key safety
factors efficiently. If a hazard is detected, a risk mitigation
module is activated and alters the vehicle’s behavior to avoid
critical consequences.

Overall, a runtime Risk Monitoring and Mitigation (RMM)
module is and should be an essential part of automated driving
technology. Automated driving systems can help prevent acci-
dents and maintain the safety of all road users by continually
monitoring the vehicle’s position, speed, and other safety data.
As technology advances, these safety criteria are expected
to become even more standardized, boosting the safety of
autonomous cars on our roads.

Risk monitoring and assessment aims to evaluate the sever-
ity of a hazard event and provide correspondent mitigation
control actions. The risk from the hazardous event can be
classified into internal risk (caused by vehicle) and external
risk (caused by the environment). For example, internal risks
can be malfunctions, faults, or failures of the perception sys-
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tem. In contrast, external risks are related to extreme weather
and light conditions for the perception systems [1]. Quite a
few researchers attempt to contribute to risk assessment and
mitigation framework. The risk assessment methodologies can
be classified into process-driven, model-based, probability and
model-based, AI-based, and cooperative mode-based method-
ology [1]. One notable work for the model-based approach is
Responsibility Sensitive Safety (RSS). RSS is a formal, math-
ematical model for AV safety intended to be used as a safety
concept for AV behaviour planning [2]. Differently, Xiao et
al. [3] proposed event-agnostic metrics and demonstrated a
configurable framework for detection and dataset annotation.
Another interesting direction but with a different focus is risk-
aware motion planning and control. Risk can be modelled as
collision probability, and Model Predictive Control (MPC) is a
popular approach for minimizing risk. For example, an optimal
overtaking problem considering predicted motion uncertainties
is formulated as a non-linear optimization problem in [4]. In
[5], the risk is modelled as the probability of violating the
safety specifications. By combining the risk measure, their
trajectory planner can plan minimal-risk trajectories while
quantifying trade-offs between risk and driving progress.

Numerous safety standards and specifications have been
proposed for various risk assessment methodologies for au-
tomated vehicles. Although considerable research has been
conducted on reducing collision risk, there is a lack of reported
studies on a comprehensive framework for handling (exter-
nal and internal) hazards from different sources. This paper
aims to bridge functional safety and control theory concepts
by incorporating definitions such as risk mitigation stability,
hazard controllability, and hazard observability. Building upon
this foundation, we present a novel Model Predictive Control
(MPC) framework that addresses the handling of hazards. The
effectiveness of the framework is demonstrated through two
representative examples in simulation. Extending the proposed
framework to monitor and mitigate various hazards in more
diverse scenarios is achievable.

This paper is structured as follows: Section 2 discusses the
theoretical background of the research. The Model Predictive
Control framework is presented in Section 3. Section 4 dis-
cusses the experimental examples. Finally, the conclusion and
outlook are shown in Section 5.

II. PRELIMINARIES AND BACKGROUND

A. Problem Formulation

For the system dynamics, we use the common state transi-
tion model.

xk+1 =F (xk,uk) (1)

where xk ∈ Rn is a state vector, uk ∈ Rm is the control input.
To evaluate the risk of a hazard, we use the most common

definition of risk: risk is the probability times severity [1].
We first define the severity sk of a hazard at time step k. Its
severity model is given by

sk+1 =S(xk+1, sk) (2)

We denote a hazard as H for the Automated Driving
System. The state is either h, meaning occurrence of the
hazard, or h̄, meaning no occurrence of the hazard. The
observation monitoring the hazard at the k-th step is denoted
as zk. We define the probability of hazard conditioned on
observations as pk = p(h|z1, z2, . . . , zk). Finally, we have
the risk model:

rk = sk · pk (3)

B. Definitions

Definition 1 (Safe Set) The state vector xk in a bounded
space X ⊂ Rn and the hazard-related observation zk in a
bounded space Z ⊂ Rm span a space χ ⊂ Rn+m. α is an
acceptable risk level, which defines the boundary of the Safe
Set χα ⊂ χ. The Safe Set represents the normal operation of
the Automated Driving System (ADS).

The risk for a hazard is monitored during the operation of
the ADS. As the standard ISO 26262 requires, a risk mitigation
system keeps the AV safe if a hazard occurs.

Definition 2 (Stability of Risk Mitigation): The risk of a
hazard can be brought back to the Safe Set in [t0, tf1] if the
risk is greater than an acceptable risk level α, as shown in
Fig. 1 .

Fig. 1: Illustration of stability of risk mitigation.

Definition 3 (Controllability of a Hazard): If a hazard
occurs, there exists a vector of uk that can bring the risk
of a hazard to the Safe Set in [t0, tf2], and the hazard is
controllable. tf2 is the deadline for tolerating the existence of
a hazard.

Definition 4 (Observability of a Hazard): If there exists
a vector of Observations zk measured by the ADS which can
estimate the probability of a hazard in [t0, tf3], the hazard is
observable. tf3 is the deadline for detecting the existence of
a hazard.

C. System Architecture

The SENSE-PLAN-ACT Paradigm is commonly used in
the ADS [6]. SENSE and PLAN require a large amount of
computation power, while ACT requires fewer computation
resources but higher reliability. This kind of distribution of
resources has been applied in some recent commercialized
products with Advanced Driver Assistance Systems (ADAS).

Fig. 2 shows our proposed system architecture for our AD
demonstrator. We implement the risk monitoring and risk
mitigation software in the simulation and will further apply
it in the AD demonstrator.
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Fig. 2: Illustration of the proposed architecture for our AD
demonstrator. The dashed block denotes hardware, while the
solid block denotes software. We monitor the hardware and
software of SENSE and PLAN, which are marked with red
color. The Risk Monitoring and Mitigation (RMM) Module
on the lower side is an additional software block to monitor
and mitigate the risk.

III. MODEL PREDICTIVE CONTROL FRAMEWORK

The proposed RMM module monitors the risk online and
triggers risk mitigation. For any nominal planner, the Risk
Mitigation Module is a supervisory planner that enforces the
risk to return to χα if a hazard happens (its risk is higher than
the acceptable level α). To simplify our formulation, we let
uk ∈ R and ūk be the control until the end of the prediction
horizon Np. Motivated by Safety Barrier Functions [7], we
have the following quadratic programming (QP) problem with
hard constraints:

u∗ =argmin
ūk∈U

||ūk − u0||2Q

s.t. ri ≤ α, k +Nd ≤ i ≤ k +Np

(4)

where u0 is a vector of length Np where each element
is the output from a nominal planner at time step k. Nd

is the deadline for bringing the risk less than α. ūk =
[uk, uk+1, . . . , uk+Nc , . . . , uk+Np−1]

T , where Nc is the con-
trol horizon. If Nc is smaller than Np, after k +Nc step, the
control is same as uk+Nc

.
The weighting matrix Q is defined as:

Q =


λ 0 . . . 0

0
. . .

...
... λNp−1 0
0 . . . 0 λNp


where λ is a factor in [0, 1]

The matrix Q smooths the transition from a nominal state
to an evasive maneuver (like a hard brake) but finally applies
more aggressive emergency actions. This also corresponds to
the requirement of ISO 26262, as there is the transition to
emergency operation instead of directly applying emergency
operation.

We predict the future evolution of the risk and assume that
the probability of the hazard remains constant. So we have

rk+1 =sk+1 · pk+1

=S(F (xk,uk), sk) · pk
(5)

We have introduced our framework. In the next section, we
provide two examples to showcase how our framework can be
applied in handling hazards.

IV. EXPERIMENTAL EXAMPLES

In this section, we provide two experimental examples
to demonstrate the benefits of our proposed framework for
reducing risks.

A. Hardware Hazard: Camera Offline

Considering an automated vehicle is driving in a suburban
area with ACC (Adaptive Cruise Control), we envisage a
critical hazard where the camera is offline, and the vehicle has
no redundant sensor configuration. Hence the ACC function
cannot continue.

We only consider the longitudinal dynamics and use a single
integrator model for the hazard. So the state transition model
is

vk+1 = vk +∆Tuk (6)

where vk denotes velocity, uk denotes acceleration and ∆T
is the time step size. The severity of this hazard relies on ego
velocity as we lose perception capability. Hence we define a
simple severity model

sk = (vk − vs)
2. (7)

The stable velocity denoted as vs, is determined by specific
regulations: in urban driving, it corresponds to a complete stop,
while on the highway, it is set at 80km/h under typical driving
circumstances.

Commonly, the camera hardware provides a safety flag to
show whether it operates normally or not. We denote this
safety flag at time step k as zk. We assume that the observation
follows the Markov assumption at each time step with the
following probability model

pk =

{
1, if zk = 1

0, otherwise
(8)

Hence we can formulate the optimization problem.

u∗ =argmin
ūk

||ūk − u0||2Q

s.t. −
√
α+ vs − vk ≤

i−1∑
j=0

∆Tuk+j ≤
√
α+ vs − vk,

i = Nd, Nd+1, . . . , Np,

0 ≤ vk+i ≤ vmax, i = 1, 2, . . . , Np,

ui ∈ [umin, umax], i = k, k + 1, . . . , k +Np − 1,
(9)
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where ūk = [uk, uk+1, . . . , uk+Nc
, . . . , uk+Np−1]

T .ū0 =
[a0, a0, . . . , a0]

T , where a0 is the output of the ACC function
before a hazard is detected. vs is a stable velocity.

We have the following parameters for the suburban driv-
ing scenario. vs = 0,∆T = 0.1s, x0 = 25m/s, u0 =
1m/s2, umax = 6m/s2, umin = −9m/s2. We define α = 1.0
and xs = 1m/s and let Np = Nc = 60, vmax = 100km/h.
We experimented with different Nd (60, 50, 40). The factor λ
in matrix Q is 0.8.

(a) Velocity. (b) Acceleration.

Fig. 3: Illustration of velocity and acceleration with different
Nd.

Fig. 3 illustrates the velocity and acceleration regarding
different Nd when the camera is offline. We can see that a
small Nd leads to a quicker deceleration, and the ego vehicle
is brought to a safe set earlier. However, this will cause a
shorter transition time. If the fault was recovered during the
transition time, such a quick reaction would not be necessary
and would result in the discomfort of passengers.

B. Software Hazard: Error of Perception Algorithm

ADS faces significant challenges in accurately perceiv-
ing the surrounding environment, including identifying and
continuously tracking surrounding objects. A failure of the
perception module often results in severe traffic accidents
[8]. In this section, we demonstrate the necessity of Risk
Monitoring and Risk Mitigation by presenting an example of
how it improves the safety of the vision-based ACC system
through risk assessment and control.

1) Confirmation problem in object tracking: The objective
of risk monitoring, in this case, is to verify the correct
functioning of object tracking. When the detection is passed
to a multi-object tracking module, an attempt is made to
match the input detection to existing tracks. If the tracks
cannot be matched, a confirmation process is applied based
on the defined confirmation threshold. A commonly used
method is to check whether the new detection has been
detected at least a certain number of times in the last several
updates [9]. The threshold should be carefully chosen to
achieve an optimal balance between computational cost and
the possibility of both false positives and false negatives.

2) Example hazardous scenarios:
• Vision-based ACC: We implemented a vision-based ACC

based on Autoware.AI [10]. The system consists of four
main modules: an object detection module based on the
darknet module in Autoware.AI, a multi-object tracking
algorithm based on Global Nearest Neighbor, the ACC
strategy proposed in the paper of Rahman et al. [11],
and a lower-level vehicle control module based on pure
pursuit and PID control.

• External scenarios: In 2020, The European New Car As-
sessment Programme (Euro NCAP) introduced the Test
and Assessment Protocol for highway assist systems [12],
which included testing scenarios for the performance of
Adaptive Cruise Control (ACC). We conducted tests on
the vision-based ACC system in the prescribed straight
road scenarios, as listed in Table I, and successfully
avoided collisions in all scenarios except for the Car-
to-Car Rear Stationary (CCRs) scenario when the ego
speed exceeded 100 km/h. A white Toyota Prius similar
to the one used in Euro NCAP tests (as shown in Fig
4) was used during testing. Subsequently, different types
of target vehicles provided by Carla simulator [13] were
used to replace the white car for testing. We observed
that certain types of target vehicles, like a light truck
”CarlaCola” with the original color set by Carla Simulator
(as shown in Fig 4), posed significant challenges to the
perception module of the vision-based ACC system, as
they could not be identified successfully. These scenarios
are considered hazardous scenarios for the vision-based
ACC system. We propose a risk monitoring and mitiga-
tion method that will be integrated with the vision-based
ACC system and retested in these hazardous scenarios to
evaluate its effectiveness.

TABLE I: Euro NCAP ACC Car-to-Car test scenarios with
Stationary and Moving Target (straight roads) [12]

Scenarios Vehicle under Test Global Vehicle Target

Car-to-Car Rear Stationary
(CCRs)

70, 80, 90,
100, 110, 120,
130 km/h

0 km/h

Car-to-Car Rear Moving
(CCRm)

80, 90, 100,
110, 120, 130
km/h

20 km/h

80, 90, 100,
110, 120, 130
km/h

60 km/h

3) Perception algorithm risk monitoring and mitigation
method: To address the potential risks associated with the
perceived limitations of vision-based ACC, a module, as
depicted in Fig. 5, has been developed and incorporated into
the ACC. In addition to the detection-confirmation-tracking-
strategy-control pipeline, objects that are detected but not
confirmed and tracked are separately listed for monitoring in
parallel. If there are objects judged to be approximately the
same object, based on their color, aspect ratio, and position
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Fig. 4: Ground Vehicle Targets: Toyota Prius (left) and Car-
laCola (right). The perception system can track the Toyota
Prius precisely. However, it occasionally loses track of the
CarlaCola.

in the image, in at least four out of the past 20 frames and
the object has not been tracked, then the perception function
is deemed hazardous. If a hazard is detected, the vehicle is
controlled using the risk mitigation method described below
(indicated by the red line in Fig. 5); otherwise, a standard ACC
logic is used for control (indicated by the green line in Fig.
5). In hazardous situations, the vehicle under test is controlled
by the model predictive controller described below to mitigate
the risk.

Fig. 5: Risk Monitoring and Mitigation for Vision-based ACC

In the model predictive controller for risk mitigation, a
double integrator model is used to predict the longitudinal
kinematics of the vehicle under test.

d̈ = u (10)

where u is the longitudinal acceleration, and d is the longitu-
dinal distance.

Therefore, we have the following state transition model

xk+1 = Axk +Buk, (11)

where xk =

[
dk
vk

]
, A =

[
1 ∆T
0 1

]
, B =

[
1
2∆T 2

∆T

]
and

yk = Cxk, (12)

where C =
[
0 1

]
and yk = vk.

Similar to the first example, the severity of this hazard relies
on ego velocity as the perception system is unreliable. And a
full stop to vs = 0 will bring minimal hazard severity in this
scenario. So we let the severity of the perception hazard be
the same as the velocity and assume that a full stop is the safe
state of the ego vehicle.

sk = vk (13)

We have the following binary probability model for hazard
detection:

pk =

{
1, if a perception error is detected
0, otherwise

(14)

Finally, we obtain the following optimization problem.

u∗ =argmin
ūk

||ūk − u0||2Q

s.t. vk+i ≤ α, i = Nd, Nd+1, . . . , Np

0 ≤ vk+i ≤ vmax, i = 1, . . . , Np

ui ∈ [umin, umax], i = k, k + 1, . . . , k +Np − 1

(15)

where ūk = [uk, uk+1, . . . , uk+Nc
, . . . , uk+Np−1]

T . ū0 =
[a0, a0, . . . , a0]

T , where a0 is the output of the ACC function.
α is the acceptable risk, which is a small threshold ϵ > 0 in
this scenario.
Nd is determined as follows. We get the distance dk and

current ego velocity vk at time step k when the error of the
perception algorithm is detected. And the time headway is
calculated as dk/vk assuming the front vehicle stands still. It
is the worst-case time limit to avoid a crash. So Nd is the
rounded value of (dk/vk)/∆T . If Nd is larger than Np, we
let Nd = Np.

4) Simulation: Simulations were conducted using the Carla
simulator to compare the performance of the vision-based
ACC with and without the Risk Monitoring and Mitigation
(RMM) module in the scenarios listed in Table I. Except
for the Ground Vehicle Target, the simulations replicate the
scenarios’ definition in the Test Protocol [12]. The ”Carlacola”
small truck offered by the Carla Simulator was used as the
Ground Vehicle Target, as illustrated in Fig 4. The Carla
simulator provides a high-fidelity environment and sensor
simulations. The input signal for the vision-based ACC was the
raw image signal generated by the RGB camera provided in
the Carla Simulator. The multi-body vehicle dynamics model
provided in CommonRoad [14] was improved and utilized for
the dynamics simulation of the ego car. To ensure accuracy
and reliability, each simulation was repeated 10 times.
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5) Results: Fig. 6 presents the simulation results of vision-
based ACC with and without the RMM module in a hazardous
scenario where the ground vehicle target is stationary, and
the velocity of the vehicle under test is 80 km/h. When the
relative distance between the two vehicles was 90 m, and the
ground vehicle target was stationary, the ACC system, without
the RMM module, tracked the target and applied appropriate
braking. However, the system lost track of the target due
to detection hazards, switched to a speed maintenance mode
(80 km/h), and accelerated. On the other hand, in the same
scenario, the ACC system equipped with the module identified
the hazard and controlled the vehicle to reach the lowest risk
state by applying the brakes and stopping the ego vehicle.

(a) Velocity (b) Acceleration

Fig. 6: Illustration of velocity, and acceleration with or without
Risk Monitoring and Mitigation (RMM)

Table II summarizes the simulation results and provides the
collision avoidance rates of the vision-based ACC system for
each test scenario under three different settings. ”70 km/h V.S.
0 km/h” means that the Vehicle Under Test is traveling at 70
km/h, while the ground vehicle target is stationary at a speed of
0 km/h. The ”Original” setting refers to the vision-based ACC
system test results without the RMM module in the original
Euro NCAP scenarios (where the target vehicle is a white
Toyota Prius) that do not result in hazards and are used as a
reference in the table. For the hazardous scenarios (where the
target vehicle is CarlaCola), it can be observed that introducing
the RMM module reduces the risk and increases the average
collision avoidance rate from 0% to approximately 47%.

V. CONCLUSION AND OUTLOOK

Functional safety has been a critical topic for ADS. Many
standards and specifications have emerged for the safety of
automated driving, but theoretical fundamentals for handling
hazards have been little investigated. This paper formally
defines the stability of risk mitigation and the Controllability
and Observability of a hazard. Based on these, an MPC
framework for handling general hazards was proposed. To
validate our concept, we implemented two examples. The
first example is the hardware hazard of a camera offline.
By tuning the parameters of the MPC framework, we can
control how aggressive the risk mitigation is. We integrate our
RMM module into a vision-based ACC system in the second
example. A hazard occurs due to the incapability of detecting

TABLE II: Simulation Results: Collision Avoidance Rate with
respect to Euro NCAP ACC Car-to-Car test scenarios with
Stationary and Moving Target (straight)

Scenario Original Hazardous,
with RMM

Hazardous,
without RMM

70 km/h V.S. 0 km/h 100% 60% 0%
80 km/h V.S. 0 km/h 100% 70% 0%
90 km/h V.S. 0 km/h 100% 40% 0%
100 km/h V.S. 0 km/h 100% 40% 0%
110 km/h V.S. 0 km/h 0% 0% 0%
120 km/h V.S. 0 km/h 0% 0% 0%
130 km/h V.S. 0 km/h 0% 0% 0%
80 km/h V.S. 20 km/h 100% 70% 0%
90 km/h V.S. 20 km/h 100% 60% 0%

100 km/h V.S. 20 km/h 100% 50% 0%
110 km/h V.S. 20 km/h 100% 50% 0%
120 km/h V.S. 20 km/h 100% 40% 0%
130 km/h V.S. 20 km/h 0% 0% 0%
80 km/h V.S. 60 km/h 100% 80% 0%
90 km/h V.S. 60 km/h 100% 70% 0%

100 km/h V.S. 60 km/h 100% 80% 0%
110 km/h V.S. 60 km/h 100% 70% 0%
120 km/h V.S. 60 km/h 100% 60% 0%
130 km/h V.S. 60 km/h 100% 50% 0%

Average 78.94% 46.84% 0%

the ”Carlacola” small truck, and a collision frequently hap-
pens in the Euro NCAP ACC Car-to-Car test scenarios with
the ”Carlacola” small truck as a stationary target. With our
proposed RMM module, some accidents in the experiments
can be avoided, and the average collision avoidance rate is
increased from 0% to approximately 47%.

In the future, we plan to demonstrate the proposed frame-
work with our demonstrator for more general hazards.
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