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Abstract—A reliable autonomous driving system should be
capable of handling driving tasks in real-time while ensuring user
safety. However, many search-based planners suffer from high
computation time, which makes them unsuitable for embedded
applications. Some simple methods, like Roll-out from OpenPlan-
ner, achieve high computation efficiency, but lack robustness and
might be unsafe in certain conditions. To solve this problem we
proposed an efficient search-based planning framework incorpo-
rating risk evaluation. Firstly, based on necessary inputs from
perception, map, and global planning stack, a 3D grid map is
generated to capture environmental semantics for our extended
hybrid A* search algorithm. We proposed a heuristic function
consisting of risk evaluation, which not only reduces A* search
time but also planes a safer trajectory. A two-step optimization
process refines the results from the hybrid A* search into a
smooth and continuous trajectory. Our proposed framework
was tested using realistic simulation scenarios within the open-
source Autoware autonomous driving stack, showing superior
responses and more robustness than the baseline OpenPlanner.
Additionally, the proposed hybrid A* search framework shows
high computation efficiency. It has a worst-case run-time of 55
ms for a 12-second planning horizon and a planning horizon of
200 meters, allowing for real-time application.

Index Terms—automated vehicles, motion planning, risk as-
sessment, vehicle safety

I. INTRODUCTION

Autonomous driving has the potential to significantly im-
prove road safety by removing human error, reduce traffic
congestion through improved traffic efficiency, and lower
emissions [1, pp. 3–4]. The functional capabilities of vehicle
automation have advanced significantly, with some proto-
types functioning on roadways [2]. Many researchers also
contributed open-source simulation tools and benchmarks to
aid in algorithm iteration in addition to the advancement of
perception, motion planning, and control technologies [3].

Three dimensions constitute the configuration space for
autonomous vehicles on a 2D plane: two dimensions, (x, y),
give the location of the vehicle, and one dimension, (theta),
specifies the direction of the vehicle. The time dimension must
be taken into account while analyzing the velocity, angular
velocity, and their differentiation. There has been a lot of
work done that uses various state space descriptions to try

to tackle this high dimensional challenge, as surveyed in [4],
[5]. In this study, we categorize various methods into two
orthogonal groups: spatio-temporal linked planning and spatio-
temporal decoupled planning, which deal with location and
tempo independently and concurrently, respectively.

The first set of planners frequently uses a hierarchical
planning framework: given a route, potential paths are planned
first, followed by the selection of a preferred maneuver and
the generation of a speed profile. OpenPlanner from Autoware
[6], which uses on-road verification, is one illustration. In its
local planning module, a trajectory generator develops a set of
local roll-outs that differ from a reference path, and a behavior
generator acts as the orchestrator, selecting an ideal local
trajectory and generating a velocity profile while taking driving
semantics into account. Similar ideas can be found in [7],
[8]. Although decoupling space and time improves computing
efficiency, it is difficult to design a path and velocity profile
independently to achieve desired movements in some dynamic
circumstances such as overtaking and merging. Wang et al.
recently integrated reinforcement learning into the hierarchical
planning framework and improved its generalization capabili-
ties [9].

Simply adding time and velocity dimensions in the case
of spatiotemporal coupled planning results in a massive ex-
pansion of the search space. The search space must thus be
carefully discretized. Ziegler and Stiller suggest employing a
spatiotemporal lattice to depict the search space in structured
areas ( [10] ). One of a predetermined range of durations
and velocities links their lattice points together. In [11],
this method is improved further by using various constant
accelerations and smooth curvature spirals to link the vertices
of the lattice.

The large dimension of the lattice makes it expensive to
repeatedly build the lattice in dynamic situations, which is one
of the disadvantages of lattice planners. In a recent study, the
Intelligent Driver Model (IDM) was used as a speed feedback
strategy to try to solve this problem, according to [12]. As
a result, it just needs a spatial lattice. However, its capacity
to respond is constrained by the deterministic speed feedback



Fig. 1: Illustration of the multiple-lane dense traffic scenario
including a curvy road, where our proposed motion planner
plans trajectories. The ego vehicle is personalized according
to our experiment vehicle. The green arrows are A* search
outputs, while the pink strip is the refined trajectory.

policy.
Decoupling the lateral and longitudinal motion in a Frenet

frame is another way to simplify the construction of a
search graph. To design both rough long-term longitudinal
movements and short-term trajectories, the authors in [13]
employ A* search and quadratic programming (QP). The
combined motion, however, is not confirmed and might result
in undesirable behavior in dynamic situations. In the same
manner, the authors in [14] utilize a linear lane-change model
for hybrid A* search and further incorporate traffic lights into
the search space. However, the derived trajectory has a jerky
velocity profile and is serrated. It is insufficient for actual
vehicle implementation because of this.

The idea of long-term and short-term planning [15] has
lately drawn greater attention, as has the need to achieve a
balance between the trade-off between the time required to
create and search a graph and the optimality of produced
trajectories [16], [17].. In the research they conducted, A*
search initially offers a preliminary long-term plan, which is
then improved by optimization taking safety and dynamical
limitations into account. Although collision-free is taken into
account in the aforementioned ways, none of them take the
collision risk into account when defining the problem. The
intended motions infringe on the Responsibility Sensitive
Safety (RSS) hypothesis because they are likely to overtake
while putting pressure on nearby human drivers and cut in
dangerously. Traffic waves and sluggish traffic flow will result
from this.

Risk evaluation is a usual function in collision avoidance
systems. A common indicator of collision risk is Time-to-X,
which includes time-to-collision (TTC), time-to-brake (TTB),
and time-to-steer (TTS). Utilizing statistical models, such as
Bayesian networks [18] and risk level sets [19], is another
approach for estimating risk. The fact that statistical models
need a lot of data is one of their shortcomings.

Contributions: In this work, we propose a real-time motion
planning framework that takes consideration of collision risk,

addressing the motion planning problem in complex urban
environments.

Firstly, we provide a computationally efficient framework,
which exploits the benefits of discretized A* search and
continuous optimization. The worst-case calculation time is
bounded by 55 ms. We use a 3D grid map to represent
traffic semantics, which has negligible construction time and
facilitates quick collision check and risk evaluation. We keep
the very needed states in the search space of hybrid A*
and propose an admissible heuristic to accelerate it. Also,
trajectory and velocity profile refinement has negligible time
cost but generates smooth and safe final trajectories.

Secondly, we propose a novel traffic heuristics for A* search
which integrates risk assessment. Our planner avoids reckless
cut-ins or risky overtaking with on-coming traffic and shows
more robustness in different situations.

Finally, we validate our work in simulated scenarios, where
measurement noises, control errors, and stochastic agent be-
havior exist. Thanks to the realistic validation, our proposed
framework can be further deployed on cars.

II. PROBLEM STATEMENT

Motion planning is a critical step in achieving high levels of
vehicle autonomy. Our motion planning framework’s duty is to
construct a trajectory from its current position to a target area.
The proposed planning pipeline’s inputs include an ego state,
object list, lane waypoints, and map information, as depicted
in Fig. 2. Our motion planning approach produces a trajectory
made up of a sequence of waypoints with the states (t,x,y,θ ,v)
in the Cartesian frame (as explained in Fig. 3).

Urban driving is a typical yet difficult task for it due to
the varying roadway geometry, numerous traffic factors, and
intense interactions. This is particularly challenging while
overtaking since it requires an overtaking vehicle (ego car)
to move both longitudinally and laterally while keeping a
safe gap from vehicles in front [4]. Generally following
requirements should be considered for motion planning in
complex urban transportation [13], [20]:

1) Real-time capability on normal usage hardware.
2) Avoiding a crash if not causing another one.
3) Hard traffic rules, including speed limit, traffic signals

and right of way.
4) Soft traffic rules, such as keeping a safe distance to the

car in front, avoiding reckless lane change and driving
in the rightmost lane.

5) Vehicle kinematics feasibility, such as path curvature and
acceleration limits.

6) Driving qualities, such as comfort and journey time.
In our work, 1) to 4) are explicitly guaranteed by the motion

planning framework. In light of 5), we focus on longitudinal
motion while applying a linear lateral model, as suggested
in [13], [14]. The curvature is smoothed in the trajectory
refinement stage. The last requirement is formulated as an
optimization target both in A* search and trajectory and
velocity profile refinement. We spotlight normal driving tasks
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Fig. 2: Illustration of the proposed motion planning framework. Our contributions are in black frames, while dotted frames
represent Autoware software.

and exclude the extreme cases in urbane driving, as a collision
avoidance system shall take effect [21].

III. MOTION PLANNING FRAMEWORK

In this section, we give a big picture of the proposed motion
planning framework and elaborate on its components.

A. Overview of the motion planning framework

Fig. 2 demonstrates the proposed motion planning frame-
work. The necessary inputs are provided by Autoware, based
on which a 3D grid map is generated. The real-time 3D
grid map is further used in the A* search incorporating
risk assessment. Due to the coarse discretization and motion
decoupling in A* search, additional trajectory, as well as
velocity profile refinement, is imperative. We refine the A*
outputs by a two-step approach including points smoothing
and minimal jerk polynomial interpolation. The final trajectory
is given to the trajectory tracking controller of Autoware to
drive the ego vehicle.

In this work, the proposed framework is applied in a scheme
of Receding Horizon Control (RHC), which re-plans at a fixed
cycle time to make full use of the latest ego and traffic state.
The re-planning frequency is 10 Hz. In the following sections,
each component of the proposed framework is introduced.

B. 3D grid map

The core idea of a 3D grid map is adding a time dimension
to a 2D space so that motion planning takes the future
dynamics of ego as well as moving obstacles into account.
We adopt Frenet frame representation for 2D space as it is
convenient for structured environments and modeling traffic
semantics [22]. Typically the driving reference line is extracted
from a route including lane information. In a Frenet frame,
the space is decoupled into two orthogonal axes s and l. The
vehicle states in a Cartesian frame are decoupled into lateral
and longitudinal directions, as shown in Fig. 3. The states of
tracked objects are projected into Frenet frame as well.

To obtain a grid map with (s, t, l) as dimensions, a behavior
prediction model is necessary. A naive approach is to assume
that vehicles drive with the same control inputs and invariant
maneuvers. Actually, this is a strong basis for many Kalman-
Filter-like predictors. In this work, we predict other vehicles’
motions by assuming that they drive with a constant longi-
tudinal velocity in the Frenet frame and stay in their current
lanes.

s

xy
l

Free space

Ego position

Occupied

Fig. 3: Illustration of motion planning in a Frenet frame. The
vehicle states in a Cartesian frame include (x,y,θ ,v,a) , which
denote vehicle position, heading, velocity, and acceleration
respectively. They are projected onto the driving reference
line for motion decoupling. (l,vl ,al) represent lateral distance,
velocity and acceleration respectively, while (s,vs,as) repre-
sent longitudinal quantities. vs,0 and vs,1 are the longitudinal
velocity of tracked object 0 and 1 respectively.

Even if the real movements of other vehicles deviate from
the predicted ones, the planned trajectory should be not only
collision-free but also have low collision risk. Therefore a fre-
quent re-planning is performed, and collision risk is evaluated
during the trajectory generation of A* search. This concept
was verified reliable in experiments even when a lead vehicle
frequently accelerates and decelerates.

Fig. 4 shows a 3D grip map transformed from the on-
coming traffic scenario in Fig. 3. It describes a 3D space Ω

by a triple (s, t, l)∈ [smin,smax]× [0, tmax]×{0, · · · ,Nl}. smin and
smax are the minimal and maximal distance horizon determined
by the rear and front sensor detection range respectively. tmax
is limited by the accuracy of motion prediction algorithms.
The right-most lane index has a value 0, while the allowed
left-most lane index is Nl . The center of gravity of a vehicle
determines which lane it currently belongs to.

3D grid maps are able to model different traffic semantics,
such as crossings, roundabouts, signalized and unsignalized



Fig. 4: Illustration of a 3D grid map. The ego vehicle is posed
at time step 0 s and distance 0 m. The pink strips represent the
current and predicted motions of other vehicles. Yellow and
red traffic lights are modeled as yellow and red static obstacles
respectively.

intersections [13]–[17]. Therefore it presents a general map
representation for different urban environments. In addition, it
takes apparently less time to construct a 3D grip map than a
spatio-temporal state lattice. Another advantage of using grid
map is that it enables quick collision check and risk assessment
for A* search.

C. Risk assessment

The risk evaluation undertaken in this paper is based on the
concept of RSS. We attach high importance to two “common-
sense” rules from RSS: Autonomous vehicles should avoid
hitting someone from behind and should not cut in recklessly
[20].

TTC is a widely accepted safety indicator, which shows
the actual occurrence of hazardous events [23]. We use it to
estimate collision risks because its calculation is simple but
accounts for both spatial proximity and velocity difference.
Another additional risk metric is the Minimal Safety Margin
(MSM), defined as the required minimal safety distance within
the vicinity of the ego vehicle. If the gap to other cars is
smaller than this value, a crash is believed to have happened.
We use this metric to overcome the measurement noises and
discretization errors and ensure the collision-free requirement
even in stand-still situations.

The formula of TTC of vehicle i is defined as follows:

T TCi =

{
ds,i−MSM
vs,i−vs, j

ds,i−MSM
vs,i−vs, j

> 0
+∞ otherwise

(1)

where ds,i is the longitudinal distance of vehicle j from vehicle
i at one time step. vs,i and vs, j denote the projected velocity in
a Frenet frame for vehicle i and vehicle j respectively. Vehicle
j drives in front of vehicle i longitudinally.

A car in urban environments has two basic maneuvers: car-
following (CF) and lane-change (LC). LC is further classified

into two phases: LC preparation and LC execution, which are
determined by whether the center of gravity of the vehicle
crosses lane borders (as shown in Fig. 5). In this paper,
LC preparation has the same risk assessment as CF as the
ego vehicle still stays in the same lane and concentrates on
maintaining a safe distance to the vehicle in front.

We introduce front-rear collision risk R(i) of the collision
between vehicle i and its lead vehicle. The formula is inspired
by [24], in which collision probability is modeled as an
exponential function of TTC. We want to keep collision risk
under a limit, and refrain from planning a trajectory with
collision risk over a threshold. Therefore collision risk is
defined as follows:

R(i) = e−w(T TCi−T TCsa f e) (2)

where T TCsa f e is a safety TTC that human accept, and w is a
positive tuning parameter. Safety TTC can be obtained from
traffic regulations or real traffic data. For example, in [25] the
TTC less than 1 second is viewed as “intensive interaction”
based on distributions of real traffic data. In this case, the
planner should avoid trajectories causing TTC value smaller
than 1 second, as it might lead to hard brakes of other vehicles.

During CF or LC preparation (in the upper side of Fig. 5),
we focus on the interaction between the ego vehicle and the
lead vehicle. The collision risk is denoted by R(e), where e
means the ego vehicle.

During LC execution (in the lower side of Fig. 5), we take
care of time-to-collision both forward and backward, so as to
avoid reckless cut-in. The collision risk is hence defined as
R(e)+R(i), where e denotes the ego vehicle and i represents
a predecessor in the target lane of LC. We will further use the
collision risk in A* search.

Minial Safety Margin (MSM)

Lane change executionLane change prepartion

Fig. 5: Illustration of risk assessment in LC preparation and
LC execution. d f is the front longitudinal distance subtracted
by MSM, while dr is the rear longitudinal distance subtracted
by MSM. vs, f and vs,r are longitudinal velocities of the lead
and following vehicle respectively.

D. Extended hybrid A* approach

The hybrid A* search proposed for the 2007 DARPA urban
challenge exploits the advantages of grid discretization and
sampling in a control space [26]. Thus it can handle general
path-planning tasks such as parking and executing U-turns
with acceptable computation time. Traditionally it utilizes a 2D
grid map and solves spatial planning problems. In this paper,



we extend it to solve spatio-temporal planning problems based
on a 3D grid map.

1) Search space: In this paper, we use a discrete search
space(t,s, l,vs,dir). Time is denoted by t. States s, and vs
follow the same definition in Fig. 3. vs is naturally constrained
by the discretization range. State l is a discrete lane index
the same as it is in a 3D grid map (in Fig 4). The last
state is the discrete driving direction for LC or CF: dir
∈ {le f t,right, f orward}.

The lateral motion is not present in the search space. We
adopt the hypothesis in [14], which uses a constant lateral
velocity with a fixed LC duration of 5 seconds. The authors
in [14] claimed that the LC duration corresponds to human
driving habits and is feasible for vehicle kinematics except
for driving with a very low velocity. If a lane width is 4
meters, then linear lateral velocity vl is 0.8 m/s. In normal
urban scenarios (e.g. 9km/h - 60km/h), vl is much smaller
than vs, hence we have v ≈ vs.

The proposed search space is the minimal but necessary
state space representation for driving in structured environ-
ments with a normal velocity. If low-velocity driving like
navigating a parking lot is required, another free-space planner
will be called.

2) Cost function: Inspired by control theory, the cost func-
tion of A* search consists of a penalty for deviation from the
desired velocity and accelerations, which is defined as

cost = w1(vs − vd)
2
∆T +w2ās

2
∆T (3)

where vd is the desired velocity, ∆T is the expanded time
step, ās is the average longitudinal acceleration, w1 and w2 are
positive tuning parameters. The desired velocity is expressed
as

vd = min{vc,
√

ades
lat /k(s)} (4)

where vc is a user-defined cruise velocity, ades
lat is the desirable

lateral acceleration in body frame, and k(s) is the curvature of
the reference line in a Cartesian frame.

3) Heuristic value function: We propose an admissible
heuristic to accelerate search and a traffic heuristics to forbid
undesired maneuvers during driving. For the cost function
definition in Eq. 3, we get an admissible heuristic by solving a
single variable optimization problem in 1D, assuming a point
mass model with a constant acceleration without constraints.
The problem is defined as follows:

min
a

w1

∫ T

0
(vs +at − vd)

2 dt +w2

∫ T

0
a2 dt (5)

where T = (vd − vs)/a.
The admissible heuristics ha(n) is hence written as

ha(n) =
2w1(vs − vd)

2√
12w1/w2

+

√
3w2

1(vs − vd)
2

3w2(w1/w2)
3
2

(w1,w2 ̸= 0) (6)

Heuristics ht(n) handles dynamic traffic flow, which incor-
porates collision risk assessment and encourages driving in the
desired lane. It is defined as

ht(n) =
{

R(e)+R(i)+ ε |l − ld | LC execution
R(e)+ ε |l − ld | otherwise (7)

where R(e) and R(i) are the collision risk of ego vehicle and
follower respectively, ε is a small positive number, and ld is
the desired lane index.

The effect of R(e) and R(i) is that it prunes search branches
causing TTC to be lower than a safety TTC. Notice that we
use a big weight in the exponent. So this term makes risky
LC (with small TTC) have extremely high costs but only has
minimal effects if TTC is larger than the safety TTC. This can
further ensure collision-free even in the existence of control
errors and prediction errors. The second part ε |l − ld | gives a
small penalty for not driving in the desired lane.

4) Node Expansion and pruning: We follow the expand
function in [14], which expands the node both in s axis and
t axis. The following branches are removed when expanding
a node: next position is occupied by obstacles between the
current and next time step in the 3D grid map, or its average
longitudinal acceleration exceeds a limit.

In our hybrid A* search, once an expanded node has states
exceeding smax or tmax, the search is stopped and provides a
solution as a sequence of continuous states (t,s, l,∆θ ,vs,vl) in
the Frenet frame. It is not guaranteed that hybrid A* search
finds a minimal cost solution, due to the coarse discretization
for long horizon and merging of continuous-coordinate states
occupying the same grid in the discrete search space. However,
it provides feasible, collision-free, and low-risk reference way-
points and velocity for further optimization. Also, as shown
in practical experiments of [26], the resulting trajectory from
hybrid A* search lies near the global optimum. This allows
us to refine the trajectory and velocity profile with relatively
low costs, which is elaborated in the following sections.

E. Trajectory refinement
The A* outputs in the Frenet frame are firstly transformed to

states (t,x,y,θ ,v) in the Cartesian frame. Directly connecting
waypoints of (x,y) leads to a serrated path. Therefore we
refine the trajectory with two steps: (1) points smoothing and
(2) minimal jerk polynomial interpolation. The waypoints are
firstly smoothed using the conjugate gradient (CG) method [6].

Due to the nature of discretization, similar continuous-
coordinate states might have the same grid index. For example,
0.1 m and 0.9 m are located in the same grid if s is discretized
with a grid size of 1 m. As a result, our smoothed waypoints
have minor differences from the original ones for discretized
planning and remain collision-free.

Next, we use polynomial trajectories developed for un-
manned aerial vehicles to efficiently interpolate between way-
points while minimizing the sum of squared jerks [27].

The minimal jerk trajectory generation in one axle is for-
mulated as a constrained QP:

min
p1,...,pM

p1
...

pM


T Q1(T0) 0 0

0
. . . 0

0 0 QM(TM)


p1

...
pM


s.t. Aeq

p1
...

pM

=

d1
...

dM


(8)



In this expression, pi is the coefficient vector of the quintic
polynomial describing the ith segment. Qi(Ti) is the Hessian
matrix for the ith segment. Aeq is a mapping matrix. di is a
vector containing the ith segment’s derivative values for the
beginning (d0) and end (dT ).

The outputs from the A* search provide sufficient informa-
tion to solve this QP problem. For example, the ith segment of
polynomial connects the (i-1)th waypoint and the ith waypoint,
which have states (ti-1,xi-1,yi-1,θi-1,vi-1) and (ti,xi,yi,θi,vi)
respectively. Thus, Ti is given by ti − ti-1. For x axle, di
is constructed as [xi-1,vi-1 cosθi-1,0,xi,vi cosθi,0]T . Note that
here 0 represents the continuous constraint for an endpoint
connecting two polynomial segments rather than a fixed value.
The same projection is applied to the y axle as well.

Luckily, the aforementioned constrained QP can be con-
verted to an unconstrained QP, and solved directly for endpoint
derivatives instead of polynomial coefficients. The optimal
closed-form solution is written as [27]:

dP
∗ =−R−1

PPRT
FPdF (9)

where dF is a grouped vector of specified derivatives, and dP
is a grouped vector of unspecified derivatives. RPP and RFP
are intermediate matrices for calculation.

The refined trajectory can be recovered from the resulting
derivatives. One example of trajectory refinement for LC is
shown in Fig. 6. Note that only a part of the trajectory is
refined, as the trajectory tracking control system only utilizes
the reference trajectory near the ego vehicle.

Fig. 6: Illustration of trajectory refinement.

F. Velocity profile refinement

Although the refined trajectory contains the velocity in-
formation in the x axle and y axle, direct utilization of the
resultant velocity leads to a wavy velocity profile. Therefore
we apply the refinement on v in a 1D manifold again.

Similarly, discrete velocities from the A* search are slightly
smoothed. Next, we use cubic polynomials to connect discrete
velocities and generate a minimal jerk velocity profile along
the path. The problem formulation and solution is omitted for
brevity, as only the number of coefficients and derivatives are
different in Eq. 8 and Eq. 9. Fig. 7 shows one example of
velocity profile refinement.

Fig. 7: Illustration of velocity profile refinement.

IV. EVALUATION

In this section, we evaluate the proposed approach in
two challenging urban scenarios and benchmark it against
OpenPlanner. Our proposed motion planning framework is
implemented in C++ based on Robot Operation System (ROS)
with a computer equipped with an Intel Core i7-9700 CPU.
Particularly, the A* search dominated the run-time. Compared
with [14], we use smaller or equal discretization ( ∆v = 1m/s,
∆s = 5m, ∆T = 1 s) and longer horizon (200 m and 12 s).
However, in dense traffic, the average run-time of our A*
search is 4.7 ms, much less than the reported average search
time in [14]. The worst-case computation time of the whole
framework is 55 ms. In the following sections, we detail how
the realistic simulation scenarios are created, and demonstrate
qualitative and quantitative results in those scenarios.

A. Simulation environment

Most of the mentioned publications validate their motion
planner in a “perfect” world, where no noise exists and all
agents drive with a constant velocity. To get more realistic
simulations, we use the simulation packages offered by Au-
toware, where measurement noises, localization errors as well
stochastic agent behavior are available. The simulated agents
attempt to drive with a maximal velocity but with noise and
react to other agents. So they can create realistic traffic shocks
in urban environments.

An internally developed tool – ViFWare, functions as the
interface among autonomous driving functions, simulators,
maps, sensors, and actuators. We use the vehicle model from
WF Simulator of Autoware, but personalize it with the pa-
rameters of our experiment vehicle. This facilitates the further
on-road test.

The first validation scenario is overtaking with on-coming
traffic, where the time window for overtaking is limited and
decisive action is required. The second one is multiple-lane
dense traffic, where 5 agents drive around the ego vehicle
along with frequent acceleration and deceleration. We show the
qualitative results in the overtaking with the on-coming traffic
scenario and the quantitative results in the second scenario.



(a) OpenPlanner (b) Our approach

Fig. 8: Use Case 1: Overtaking with Limited Time Window

B. Overtaking with on-coming traffic

The map we used here is the vector map of Carla Town
01 from open-source Carla Simulator [28], which consists of
2 lanes traveling in opposite directions. In order to create
intensive interactions between the ego vehicle and the on-
coming vehicle, we design two use cases as follows:

1) Use Case 1: Overtaking with Limited Time Window: The
lead vehicle drives with maximal 3 m/s, while the on-coming
vehicle drives with maximal 10 m/s. In the simulation, the
proposed motion planner foresees the possible crash with the
on-coming vehicle and accelerates to come back to its own
lane, as shown in Fig. 8(b). Due to the decoupling of velocity
and path planning, the OpenPlanner firstly decelerates and then
starts to overtake when getting close the slow lead vehicle.
However, during overtaking it does not accelerate aggressively
to come back to the original lane when the on-coming vehicle
is quickly approaching. Since the time window of a successful
overtaking is missed, all possible paths are blocked (in red)
and hazards take place, as shown in Fig 8(a).

2) Use Case 2: Giving Right of Way: The lead vehicle
drives with a maximum of 4.5 m/s, while the on-coming
vehicle drives with a maximum of 12 m/s. As our planner
estimates a high collision risk in the overtaking lane, the ego
vehicle gives up overtaking and gives the right of way even
though the distance to the on-coming vehicle is roughly 65
meters. This makes a smooth and comfortable coming back.
On the contrary, OpenPlanner gives the right of way only
when the distance to the on-coming vehicle is smaller than a
fixed safety threshold without considering the high on-coming
tempo. As a result, the steering is extremely harsh to avoid a
collision and the ego vehicle drives off the road (in Fig 9(a)).

C. Multiple-lane dense traffic

This scenario is motivated by Carla Town 03, which consists
of multiple lanes and curvy roads for urban environments. We
simulate 5 agents around the ego vehicle, including 2 slow
agents (with a maximal velocity of 4 m/s) and 3 normal agents
(with a maximal velocity of 10 m/s). Due to the space limit,
this scenario is only shown in the attached video.

We benchmark our approach against OpenPlanner with the
same route (450 m) and the same parameters for simulated
agents. Note that we carefully tuned OpenPlanner’s parameters
to ensure that its driving is collision-free and has similar
motion constraints as ours (e.g. acceleration limits, safety

(a) OpenPlanner (b) Our approach

Fig. 9: Use Case 2: Giving Right of Way

border). The comparison result is shown in Table I, where
DTCmin and T TCmin are minimal Distance-to-Collision and
minimal Time-to-Collision respectively. The collision check
is implemented by the three-disk approximation in [29] as-
suming a constant velocity and orientation. In addition, |κ|max
denotes the maximal curvature of the vehicle’s real trajectory,
v represents the average velocity during the journey, and e is
the average tracking error, which is expressed as the closest
distance between the current position and reference trajectory.
Tworst is the worst-case computation time of the planner in
the presence of 5 agents. Some observations can be made

TABLE I: Comparison of results in a 450 m route

Planner DTCmin
(m)

T TCmin
(s)

|κ|max
(m−1)

v
(m/s)

e
(m)

Tworst
(ms)

Ours 3.97 4.90 0.04 7.22 0.12 55.0 1

Open
Planner 5.68 4.10 0.11 4.33 0.19 < 100 2

1 Time consists of: search time (54.6 ms), trajectory refinement (0.3
ms), velocity profile refinement (0.1 ms) and 3D grid map update
time (0.1 ms).
2 The estimated time is from [6].

out of Table I. The proposed planner and OpenPlanner both
can finish the route without any collisions, but the proposed
approach focuses more on a bigger TTC, while OpenPlanner
tries to enlarge DTC due to the safety distance setup. Our
planner provides a more comfortable trip for the passenger, as
the vehicle motion of our approach has much smaller curvature
than OpenPlanner’s. Moreover, the proposed approach reduces
average tracking errors by 37% compared to OpenPlanner
while driving with a higher velocity in dense traffic. This
shows that the proposed planner plans a trajectory closer to
the global optimum even though noise and uncertainties exist.
The computation time of the proposed approach is bounded
by 55 ms in the worst-case, roughly half of the planning cycle
time, therefore it can run on embedded hardware.

V. CONCLUSIONS

In this paper, we propose a novel motion planning frame-
work for complex urban environments. The framework is
capable of providing a safe and smooth trajectory in real-time
and is robust in different scenarios such as overtaking with on-
coming traffic and multiple-lane dense traffic. We demonstrate
that the planner can correctly make the optimal lane-change



decisions and avoid reckless overtaking and cut-in while
showing better driving performance. Moreover, the trajectory
and velocity refinement reduces the trajectory tracking errors
compared to the state-of-the-art OpenPlanner and improves
driving comfort.

In the future we will extend the work in several promising
directions: (1) A data-driven prediction model can be applied
in the framework to predict the motions of other road users; (2)
Reinforcement learning can be integrated into the A* search
to further improve the efficiency; (3) A more complex vehicle
motion model can be used during trajectory refinement to
extend the operational design domain.
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