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Abstract— Adaptation to changing dynamic situations is yet
an open problem for automated driving systems that require
robust and efficient solutions. Particularly in the context of
motion planning algorithms, this problem is typically addressed
by re-planning the whole trajectory or repairing the invalid
part. The main drawback of all the current approaches is the
increased demand for computational resources, a critical safety
issue in automated vehicles. Motivated by this, in this paper we
propose a novel and efficient method for trajectory repairing
utilizing Bernstein basis polynomials and path-speed decou-
pling. A robustness metric is introduced to tune the driving
behavior. Accurate numerical simulations indicate performance
figures typically better than 25ms for a feasible solution in
representative driving scenarios, which was not achievable in
other state-of-the-art approaches.

I. INTRODUCTION

Analysis of recent accident statistics [1] indicates that
despite strenuous testing efforts, autonomous vehicles (AVs)
still fail to make the right decisions from time to time,
potentially leading to property damages or even injuries,
particularly in emergency situations. In a dynamic traffic sce-
nario, the behavior of other vehicles might suddenly change
and lead to a hazardous situation. From the perspective of an
automated driving system, a common way to manage such
a situation is to re-plan and update the trajectory from the
current state to the target one. This would, however, require
searching for alternative trajectories on a continuous basis.
A more efficient approach would be first to detect the part of
an invalid trajectory that can stay unchanged and then repair
only the remaining part of it [2]. The main benefit of this is
the elimination of the need to re-plan the whole trajectory
continuously, as well as increased robustness against small
disturbances.

In this paper, we propose a novel and efficient framework
for cut-off state detection and trajectory repairing by exploit-
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(a) Speed Repairing in S-T domain. The motion of
the ego vehicle and the other vehicle in the current
ego lane is projected into the S-T domain

(b) Path Repairing in L-S domain. The motion of the
ego vehicle and the other vehicle is projected into the
L-S domain in curvilinear coordinates.

Fig. 1: Trajectory repairing utilizing path-speed decoupling.

ing the property of Bernstein Basis Polynomials and Path-
Speed Decoupling. Compared to the existing literature, the
contributions that we report in this paper are summarized as
follows:

• Formulation of a general convex optimization problem
using Bernstein Polynomials for both path and speed
repairing, considering kinematic constraints. The algo-
rithm extends speed profile optimization [3] into path
optimization using a same problem formulation but with
kinematic path constraints. Our implementation is based
on Python but is already real-time capable.

• Proposing an efficient and real-time capable scheme to
identify the critical time/distance to react and repair the
speed profile and the path with safety assurance.

• The first formal definition of a robustness metric (α)
for a fail-safe motion planner. It is a parameter that can
balance trajectory re-planning and repairing, as well as
comfort and robustness, which enables high-level tuning
of automated driving behavior.

II. RELATED WORK

A. Computation of Time-To-X

One commonly used safety metric is Time-To-X (TTX),
where X refers to the corresponding reaction in the collision



path. For example, Time-to-Collision (TTC) measures the
time to collision and guides whether the AD (Automated
Driving) system should send a warning to the driver or
intervene directly [4]. Other metrics in this family are as
follows: TTB (Time-To-Brake) indicates the time to brak-
ing with maximum deceleration; TTK (Time-To-Kickdown)
indicates the time to reach the maximum velocity with full
acceleration; TTS (Time-To-Steer) indicates the time to fully
steer to the left or right with the maximum steering angle.
Furthermore, the Time-To-React (TTR) has been proposed
as a worst-case metric taking account of all Time-To-X
metrics mentioned above [5]. The concept of TTX can be
extended in the spatial axes, and define metrics such as
DTB (Distance-To-Brake), DTS (Distance-To-Steer), DTC
(Distance-To-Collision), DTM (Distance-To-Maneuver), and
DTR (Distance-To-React) [6].

Generally, there are two ways to calculate TTX online:
using empirical estimates or by forward simulation. Schratter
et al. [7] use an empirical formula based on the current
ego state and surrounding states to estimate TTB and TTS,
and, finally, estimate the collision risk for decision-making of
an emergency maneuver. Their proposed collision avoidance
system can handle the pedestrian-crossing scenario in an
occluded area. However, extending this approach to more
general critical scenarios is not straightforward.

In the scope of forward simulation for TTX calculation,
reachable set analysis has been applied in the literature for
searching for TTR [8]. However, this provides an over-
approximation of the true TTR. In [2], [9], TTX is obtained
by a modified binary search using realistic emergency ma-
neuver models. Therefore, it can compute TTX values with
defined accuracy and handle scenarios with multiple static
and dynamic obstacles. However, they give the same impor-
tance to longitudinal emergency maneuvers (TTB, TTK) and
lateral ones (TTS), which is counterintuitive.

As a commonsense behavior in a very typical driving
situation, e.g., when facing an emergency on the ego lane, the
driver preferably attempts to adapt the speed, if not feasible,
then tries to steer the car to avoid an accident. In this work,
we use a hierarchical search scheme mimicking this behavior
for calculating TTR (or DTR) to improve search efficiency.

B. Planning schemes

Unlike other literature, which classifies planning algo-
rithms by their problem formulations [10], we classify the
planning scheme into two groups: re-planning and repairing.

1) Re-planing: When an agent navigates in a physical
world, the agent’s action shall depend on information gath-
ered during execution, termed as Feedback Motion Planning
in [11], or more simply re-planning. The re-planning scheme
has been commonly adopted in Autonomous Driving Soft-
ware Stacks, such as Baidu Apollo [12]. After a re-planning,
graph search-based planners and sampling-based planners
have the chance to obtain a global optimal result (assuming
no time limit); however, the newly planned trajectory might
diverge from the previous quite a lot. As a result, the trajec-
tory tracking might be unstable. On the contrary, numerical

optimization approaches rely on the previous planning result,
and the newly planned trajectory still follows the original
one, but the result is only local optimum. To relieve the effort
of re-planning, Apollo EM (Expectation and Maximization)
planner proposes a path-speed decoupled iterative optimiza-
tion scheme [12]. Our work is also motivated by the EM-type
iterative algorithm.

2) Repairing: Unlike re-planning, repairing means that
only the necessary part of a reference trajectory is changed
due to environmental disturbances. This concept has been
widely used in the robotics domain as well as for UAVs
(Unmanned Aerial Vehicles), and UGVs (Unmanned Ground
Vehicles), in the form of local re-planning [13] and trajectory
deformation [14]. However, they are not explicitly intended
for AVs and do not necessarily provide safety assurance.
The point of “repairing” depends strictly on the optimization
setup. Most recently, Lin et al. proposed a sampling-based
trajectory repairing algorithm using closed-loop rapidly-
exploring random trees (CL-RRT) and developed a safety as-
surance scheme for the repaired evasive maneuver. However,
the sampling-based approach relies on randomness, which is
computationally expensive in some scenarios as it is not easy
to sample nodes in a “narrow passage”, which is a typical
problem of sampling-based planners.

III. PRELIMINARIES

A. Vehicle Model and Configuration Space
We use a kinematic bicycle model [11] in this work as

shown in Fig. 2. A two-wheel bicycle represents a four-
wheeled vehicle, with the front wheel in the center of the
front axle and the rear wheel in the center of the rear axle.
Due to the steering angle δ , the vehicle cannot drive sideways
and drives on a circle with a radius R = L/tan(δ ), where L
denotes the distance between the front and rear axles. For the
path planning problem for AVs, we define a configuration-
space or C-space as χ ⊂Rn. The road curvature in the vehicle
C-space is defined as κ = 1/R.

Fig. 2: Illustration of bicycle model.

We use the Frenét frame representation for 2D space
because it is suitable for structured environments and traffic
semantics modeling [15]. Usually, the driving reference line
is extracted from an HD (High-Definition) map. In a Frenét
frame, the space is decoupled into two orthogonal axes s
and l (see Fig. 3). The vehicle states in a Cartesian frame
are decoupled in the lateral and longitudinal directions. The
states of the tracked objects are also projected into the Frenét
frame.



A point in the C-space represents the ego vehicle. Road
boundary considering ego vehicle width is used as the
lower and upper bounds in the Frenét frame. Other traffic
participants also need to be represented in the C-space. We
adopt the safety ellipse to inflate the occupancy of other
vehicles. As shown in Fig. 3, the semi-major axis and semi-
minor axis of the safety ellipse are denoted as Soffset and
Loffset respectively.

Fig. 3: Illustration of configuration space

B. Bézier Curve and Bézier Trajectory

The Bernstein basis is defined as bi
n(x) =

(n
i

)
· xi · (1 −

x)n−i,x ∈ [0,1]. The polynomial function represented by
linear combinations of the Bernstein basis is called a Bézier
curve. A Bézier curve of degree n is expressed as follows:

B(x) = c0b0
n(x)+ c1b1

n(x)+ · · ·+ cnbn
n(x) =

n

∑
i=0

cibi
n(x) (1)

where the polynomial coefficients [c0,c1, · · · ,cn] symbolized
as c are the vector of control points for the Bézier curve.
Compared to a monomial basis polynomial, the Bernstein
basis polynomial has the following properties [16]:

1) Fixed interval. The Bézier curve with respect to vari-
able x is defined on x ∈ [0,1].

2) End point interpolation. The Bézier curve always be-
gins with the first control point, and terminates at
the last control point, but does not pass other control
points.

3) Convex hull. The Bézier curve B(x) comprises a set
of control points c that lie entirely within the convex
hull defined by all these control points. If the control
points of the Bézier curve satisfy p ≤ ci ≤ p̄, ∀i ∈
{0,1, · · · ,n}, it follows that p ≤ B(x)≤ p̄, ∀x ∈ [0,1]

4) Hodograph. A hodograph is denoted as the derivative
curve B(1)(t) of the Bézier curve B(x) and is always
a Bézier curve with control points satisfying ci,1 = n ·
(ci+1,0 − ci,0), where n is the polynomial degree.

The Bézier curve is defined on a fixed interval [0,1]. To
get an interval of arbitrary length for each trajectory segment,
we need a scale factor h to scale any x assigned to that
segment. Thus, the basic Bernstein piecewise trajectory with
m segments can be written as follows [16]:

f (x) =


h0B0(

x−X0
h0

),x ∈ [X0,X1)

h1B1(
x−X1

h1
),x ∈ [X1,X2)

. . .

hm−1Bm−1(
x−Xm−1

hm−1
),x ∈ [Xm−1,Xm]

(2)

where B j(t) is the j-th Bézier polynomial. ci
j is the i-th

control point of the j-th segment of the whole trajectory.

X1,X2, · · · ,Xm are the interval end of each segment. The total
interval length is X = Xm −X0. h0,h1, · · · ,hm−1 are the scale
factors for each piece of the trajectory, such that the interval
of a Bézier polynomial is scaled from [0,1] to the interval
[X j−1,X j] allocated in one segment.

To support the further formulation of the optimization
problem, we give some important definitions and theorems.
The arbitrary j-th piece of a Bézier trajectory f (x) is denoted
by f j(x).

Definition 1 (Collision-free Space Ω): Assuming that the
occupancy of all obstacles at time t in the configuration
space χ is known and denoted as Occ(t). The set Ω(t)⊂ χ

is the set of collision-free states at time t without collision
with Occ(t), i.e. Ω(t) = χ \Occ(t) .

Definition 2 (Convex Corridor Scor): A convex set in Ω

is called a convex corridor, denoted as Scor. If f j(x) resides
in Scor for convex hull property, f j(x) is collision-free.

Theorem 1 [16]: Assume that an arbitrary control point
of f j(x) satisfies ci

j ∈ {ci
j|p0

j ≤ h jci
j ≤ p̄0

j}, where p0
j and p̄0

j
denote the lower bound and upper bound bias, respectively.
Then the convex corridor Scor = {(x,y)|p0

j ≤ y ≤ p̄0
j ,x ∈

[X j,X j+1]} is also a rectangular corridor, denoted as Srec,
where f j(x) is a collision-free trajectory residing in Srec.

Theorem 1 is an extension of convex hull property. The
optimization of Bézier trajectories with Srec has been applied
in UAVs [16], and AVs [17]. Furthermore, by combining the
convex hull property and hodograph property, we can use
control points to constrain the Bézier trajectory’s hodograph,
such as the trajectory’s velocity, acceleration, and jerk.

Lemma 1 [3]: Let M ∈ R(n+1)×(n+1) denote a change of
basis matrix from Monomial basis (1,x, . . . ,xn) to Bernstein
basis (b0(x),b1(x), . . . ,bn(x)). We have Mi,0 = 1, 0 ≤ Mi, j ≤
1, i ∈ {0,1, · · · ,n}, j ∈ {0,1, · · · ,n} .

Theorem 2: Assume that an arbitrary control point
of f j(x) satisfies ci

j ∈ {ci
j|p0

j + h j p1
jMi,1 ≤ h jci

j ≤ p̄0
j +

h j p̄1
jMi,1}, where p0

j , p1
j are the lower bound bias and skew,

and p̄0
j , p̄1

j are the upper bound bias and skew. Then the

convex corridor Scor = {(x,y)|p0
j + h j p1

j
x−X j

h j
≤ y ≤ p̄0

j +

h j p̄1
j

x−X j
h j

,x ∈ [X j,X j+1]} is also a trapezoidal corridor,
denoted as Stra, where f j(x) is a collision-free trajectory
residing in Stra.

The proof of Theorem 2 in [3] does not consider the scale
factor. We corrected the proof in our work. Stra can more
accurately approximate Ω than Srec, which has been applied
in speed profile optimization in [3]. Our work implements
Stra for both speed and path optimization for its simplicity
and sufficient accuracy. It should also be noted that the most
recent work [18] provides a sufficient condition for convex
hull property for more general convex corridors.

C. Robust Trajectory Repairing

Fig. 4 illustrates the relationships of the necessary defini-
tions for the robust trajectory repairing method, which are
described next.

Definition 3 (XTR): XTR is the maximum metric that the
ego vehicle can follow the reference trajectory u([x0,xh]) with



respect to variable x for which a collision-free trajectory is
guaranteed. x0 is the initial state, xh is the horizon. x can be
time t or distance s, correspondingly we have TTR or DTR.

Definition 4 (Cut-off State): In the real world, every
dynamic system has actuation delays and errors. ∆X denotes
here the compensation time or distance for the actuation
delay. Subtracting ∆X from XTR, we get the cut-off state,
which is the maximal X where the AD system must execute
an evasive maneuver.

Definition 5 (α-Robustness): Due to changes in driving
conditions, a collision is likely to happen at XTC (X-To-
Collision), and a critical XTR is respectively identified. α in
[0, 1] denotes the robustness metric for a choice of a feasible
state X f (t or s) to react. We then define α-Robustness as
αX f = α · (XT R−∆X), which indicates the state (t or s) at
which the repairing will start.

Tuning α is straightforward. With a smaller α , a larger
segment of the reference trajectory must be repaired; the
AD system is more sensitive to driving condition changes
but provides a more comfortable reaction. On the contrary,
with a larger α , a smaller segment of the reference trajectory
must be repaired, and the AD system is more robust against
driving condition changes; however, the maneuver is more
aggressive due to approaching the critical point. If α is 0,
the planning scheme is the same as replacing the trajectory
(re-planning). If α is 1, the planning scheme is the same as
repairing.

feasible Xf to react actuation delay ∆X

α·(XTR- ∆X) Cut-off 
State

XTCXTRX0

Fig. 4: Illustration of α-robustness

IV. OVERALL APPROACH

Fig. 5 gives an overview of the proposed trajectory repair-
ing scheme. We first detect that the initial reference trajectory
violates the traffic rule or potentially causes a collision. The
first option is to adapt the ego vehicle velocity, and we
search for TTR in the S-T domain. If adjusting the speed to
avoid the traffic rule violation is possible and proper (e.g.,
not leading to a full stop), the speed repairing is activated,
and the updated speed profile is further given to the control
and actuation layer. However, suppose abating the speed is
impossible or improper. In this case, we compute the DTR
in the L-S domain and check if it is possible and proper
to avoid traffic rule violations. If it is, the path repairing is
activated, and speed repairing is again executed to update the
speed profile for the new path. If it is not, AEB (Automatic
Emergency Braking) system is triggered and performs an
emergency brake.

A. Cut-off State Detection

To provide sufficient space for possible driving maneu-
vers from the cut-off state, we need to under-approximate
the XTR considering evasive maneuvers related to speed
(i.e., brake and kick-down) and evasive maneuvers related
to the path (i.e., steering left or right). In previous work
[2], both Mspeed (speed-related maneuvers) and Mpath (path-
related maneuvers) are computed simultaneously for under-
approximating TTR. However, this is not efficient and is
counter-intuitive. We propose a hierarchical search scheme,
in which we firstly under-approximate TTR considering
Mspeed ; if it is not proper, we search for DTR considering
Mpath. As shown in Scenario (1) of Table II, we reduce the
computation time by avoiding the unnecessary search for
DTR.

Fig. 6a shows the generated Mspeed in the S−T domain.
An obstacle suddenly cuts in at 1.9s, leading to a potential
collision. Hence the reference speed profile must be adjusted.
In the example, the time resolution is 0.1s, TTK is 0.3s, and
TTB is 0.7s. Therefore, TTR is 0.7s.

Fig. 6b shows the generated Mpath in the X−Y domain. We
follow the design of evasive steering maneuvers in [19]. The
lateral target of the evasive path has a lateral offset Loffset to
the obstacle and is parallel to the reference path. Different
from [19] using a polynomial model for the evasive path,
we adopt Dubins Path [11] for the evasive path, as it takes
account of the minimum turning radius of a bicycle model.
In Fig. 6b, the traffic rule disallows the ego vehicle to steer
to the right. The DTR is hence the DTS to the left.

B. Trajectory Repairing Using Bézier Curve Optimization

We utilize the same Bézier trajectory optimization formu-
lation for path repairing and speed repairing with slightly
different formulations of constraints. The repairing starts

Reference Trajectory

NoViolating traffic rules? Control &
Actuation 

Yes
Speed Repairing

Compute TTR. 
Decide whether to repair

the speed.

Yes
Path Repairing

Compute DTR.  
Decide whether to repair

the path.

No

AEB

Yes

No

Fig. 5: Flowchart of the proposed trajectory repairing frame-
work



(a) Search for TTR. (b) Search for DTR.

Fig. 6: Exemplary results of binary search in S-T domain
and X-Y domain.

from the desired point with α-robustness. The objective
function for the Bézier trajectory is designed as follows:

J = w1
∫ X

0 ( f (x)− r(x))2dx+w2
∫ X

0 ( f ′(x)− r′)2dx+
w3

∫ X
0 f ′′(x)2dx+w4

∫ X
0 f ′′′(x)2dx+w5( f (X)− r(X))2

(3)
where x can represent t or s, and f (x) can represent s(t)
or l(s). r(x) is the reference speed profile or path. r′ is
the constant reference speed vr or the constant reference
lateral change rate l′r. X is the horizon Tm or Sm. w1 · · ·w5
are weights for each term. The first term is to minimize
the difference between the Bézier trajectory and the refer-
ence trajectory. The second term minimizes the deviations
between the actual f ′(x) and the reference r′. The third and
fourth objectives smooth the Bézier trajectory by penalizing
acceleration and jerk, respectively. In addition, we expect the
end station to reach a certain value r(X) by the last term.

Next, we introduce the typical constraints for the optimiza-
tion problem for both S−T domain and L− S domain, in-
cluding boundary constraints, continuity constraints, security
constraints, and physical constraints. However, the kinematic
constraints differ in the S−T domain and the L−S domain.
In the following formulation, ci,l

j is the i-th control point
of the j-th segment of the Bézier trajectory with the l-th
order derivative. h j is the scale factor for the j-th segment
of the Bézier trajectory. We provide more general constraints
compared to previous work [16], [17], [3].

1) Boundary Constraints: The piecewise Bézier trajectory
starts at a fixed value of the zero-order, first-order, and
second-order derivative, and it is defined as

(h0)
1−lc0,l

0 =
dl f (x)

dxl |x=0, l = 0,1,2 (4)

2) Continuity Constraints: The piecewise Bézier trajec-
tory is continuous at the connecting points in terms of
the zero-order, first-order, and second-order derivatives. It
follows that

(h j)
1−lcn,l

j = (h j+1)
1−lc0,l

j+1, l = 0,1,2, j = 0,1, . . . ,m−1.
(5)

3) Safety Constraints: With trapezoidal corridors Stra, we
come to the safety constraints:

p0
j +h j p1

jMi,1 ≤ h jc
i,0
j ≤ p̄0

j +h j p̄1
jMi,1 (6)

where i = 0,1, . . . ,n, j = 0,1, . . . ,m−1. As stated in Section
III-A, the ego vehicle is represented as a point, and other
obstacles are correspondingly inflated according to the safe
ellipse. To have linear constraints, we take the Soffset and
Loffset as an additional safety margin in the safety constraint
formulation. We implemented a corridor generation algo-
rithm that generates stra concerning a minimum resolution
and merges similar pieces of the Bézier trajectory.

4) Physical Constraints: We take into account the real
physical limits of the vehicle and constrain the velocity,
acceleration, and jerk. We use the Hodograph property (see
Section III-B) to obtain the Bézier polynomials of velocity,
acceleration, and jerk. The constraints follow that

β
l
j
≤ (h j)

1−lci,l
j ≤ β̄

l
j (7)

where i = 0,1, . . . ,n, l = 1,2,3, j = 0,1, . . . ,m−1. β
l
j

and β̄ l
j

are upper bound and lower bound for l-th derivative of the j-
th segment respectively. The bounds for acceleration and jerk
remain constant for different pieces of the Bézier trajectory.

5) Kinematic Speed Constraints: The generated speed
profile must be kinematically feasible. Let ades

lat be the desired
lateral acceleration in the vehicle frame and |k|r,max be
the maximum absolute curvature of the reference path for
t ∈ [Tj,Tj+1]. Similar to [20], the lateral acceleration is
constrained as

ci,1
j ≤ min{β̄

1
j ,
√

ades
lat /|k|r,max} (8)

6) Kinematic Path Constraints: The generated path must
be kinematically feasible, and its turning radius must be
greater than the minimum turning radius of the ego vehicle.
Following the formulation in [21], we assume that 1) the
ego vehicle’s orientation is approximately parallel to the
reference line of the Frenét frame; 2) The lateral “accel-
eration” l′′ is numerically small and is assumed to be 0.
The second assumption can easily be fulfilled as l′′(s) or
f ′′(x) is minimized during optimization. However, for an
evasive maneuver, assumption (1) is not true, so we reshape
the formulation of the constraints.

In [21], the curvature of the path is bounded by:

tan(δmax)∗κr ∗ l − tan(δmax)+ |κr| ∗ lwb ≤ 0 (9)

where δmax is the maximal steering angle, κr is the reference
curvature, and lwb is the wheelbase length. The inequality (9)
shows that bounding κ is equivalent to bounding l. We can
express the corresponding inequality for the j-th segment as
follows

h jc
i,0
j ≤ max{ 1

kr
− lwb

tan(δmax)
, l f u} if kr > 0 (10)

h jc
i,0
j ≥ min{ 1

kr
+

lwb

tan(δmax)
, l f l} if kr < 0 (11)

where l f u and l f l are a feasible upper bound and a feasible
lower bound, respectively. In practice, we use the curvature
with maximal absolute value as kr in the path kinematic
constraint for each path segment, which is already conser-
vative. Therefore we limit the boundary provided by the



curvature constraint because an ultra-conservative boundary
makes the optimization problem infeasible in the context of
a lane change.

Finally, speed repairing and path repairing can be formu-
lated as a quadratic programming (QP) problem :

min
c

cT Qcc+pc
T c+ const

s.t. Aeqc = beq

Aiec ≤ bie

(12)

where c is a combined vector of (c0,c1, . . . ,cm−1). Due to the
limit of pages, we refer the interested reader to the appendix
of [3] for the formulation of speed profile optimization.

V. EVALUATION

We evaluate our approach using traffic scenarios from the
open-source CommonRoad platform [22]. The implementa-
tion of our approach is in Python and runs on a computer
with an Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz. The
search-based planner shown in [20] is able to provide a
reference trajectory. The vehicle parameters for the ego
vehicle is for Ford Escort [22]. Furthermore, we limit the
maximal execution time for all algorithms to 1.0s.

A. Baseline: CL-RRT

CL-RRT was originally proposed for the 2007 DARPA
Urban Challenge [23], and it has been recently improved and
applied in trajectory repairing problems [2]. Following [2],
[23], we implemented a variant of CL-RRT, which samples
in the state space of (s, l,Φ,vcmd). Φ denotes the sampled
orientation and vcmd is the desired command velocity. The
sampling strategy in [2] uses a Gaussian mixture model to
increase the sampling efficiency. However, its performance
relies on the quality of reference trajectory and requires well-
designed heuristics. For more general cases, we adopt the
random sampling strategy in the original work [23].

B. Scenario 1: Urban T-Intersection

We select a challenging urban T-intersection scenario1 to
validate our approach. The scenario animation can be found
in the Scenario Selection Tool of CommonRoad. According
to the flowchart in Fig. 5, we first compute the TTR. Each
car in the scenario is assumed to have a rectangular shape.
We project the predicted trajectories of the extreme vertices
of obstacles that intervene in the ego-driving lane into the S-
T domain. Two cars crossing the driving lane are presented
in the middle of Fig. 7. After computing TTR, the algorithm
checks if it is feasible to adapt the speed (Its average
computation time is 9.8ms in Table II). In this scenario,
TTR is only 0.9s, which is challenging for sampling-based
approaches. The deceleration is the proper evasive maneuver.

Next, we start speed repairing. The actuation time delay
∆T is assumed to be 0.3s. The constant reference speed vr
is 12.5m/s. The safety margin Soffset = 4m. The weights in
the objective function are: w1,w2 = 2,w3,w4,w5 = 1. Fig. 7
shows the optimized speed profile and generated trapezoidal

1CommonRoad ID: DEU Flensburg 6 1 T-1

corridors with respect to different α . Fig. 8 demonstrates
the optimized speed, acceleration, and jerk with respect to
different α . The tradeoff effect of α can be summarized as
follows: a larger α gives the system more “waiting time” to
react and improves the robustness. However, the maneuver
becomes more aggressive and produces higher jerks.

One exemplary “unlucky” sampling of CL-RRT projected
into the S-T domain is shown in Fig. 9. We attempted
different α values for initiating repairing for CL-RRT. One
notable problem of it is that CL-RRT might sample a large
number of invalid samples resulting in collisions, traffic
rule violations, and physical limit excesses (an example is
visible in Fig. 9). Therefore, its performance can vary in
each simulation due to its stochastic nature. The average
computation time of CL-RRT is higher than our time limit
of 1.0s. By comparison, as shown in Table II, our speed
repairing algorithm resulted in average computation times of
9.2−13.8ms for different α levels.

C. Scenario 2: Blocked T-Intersection

The second scenario is a blocked T-intersection, modified
from another T-intersection scenario2. We insert a static
obstacle in front of the intersection so that the ego vehicle
must execute a lane change to continue the route. We first
searched for TTR. However, the ego vehicle must stop fully
and cannot continue driving. Hence we again search for
DTR, which is 27m in this scenario, and steering to the
left is a proper evasive maneuver. The average computation
time of the search for TTR and DTR is 11.4ms and 1.8ms,
respectively.

The path repairing is afterward triggered. As we use path
repairing that does not comprise temporal information, we
project the occupancy of each traffic agent in a prediction
horizon of 10s into the L-S and X-Y domain to ensure
safety. The predicted trajectory of the car behind the ego
vehicle is ignored, as it has to comply with the ego vehicle.
The actuation distance delay compensation is ∆s = vr ·∆T =
3.75m . The longitudinal safety margin Soffset is 4m, and
the lateral safety margin Loffset is 2.3m. All weights of the
objective function are 1. Fig. 10a and Fig. 10b show the
path repairing in L-S and X-Y domains with different α

values, respectively. The path is repaired due to an emerging
static obstacle and returns to the reference path before the
T-intersection.

After path repairing, the speed must be re-planned as well.
To avoid aggressive behavior, kick-down is forbidden. The
speed re-planning is the same as speed repairing with α = 0,
shown in the first scenario. In the interests of brevity, the
optimization result is not reported here, but its computation
time is indicated in Table II.

One exemplary result of CL-RRT is shown in Fig. 10c.
Due to invalid samples, CL-RRT’s average computation time
exceeds the time limit (1.0s), which is remarkably slower
than our proposed approach (total average computation time
is approximately 25ms) (See Table II).

2CommonRoad ID: ZAM Tjunction-1 196 T-1



Fig. 7: Optimization and trapezoidal corridors with different α . The left picture shows the urban T-intersection scenario,
where planning starts from the arrow following a green line and attempts to reach the yellow goal region. The three right
pictures include the other vehicles’ extreme points projected into the S-T domain (in the ego lane) and optimization results.

Fig. 8: Optimized speed, acceleration, and jerk with different α .

Fig. 9: “Unlucky” sampling of CL-RRT projected into S-T
domain. After 500 samples (17.7 s), CL-RRT did not find a
solution to the goal due to too many invalid samples.

We compared the maximal and average curvature of the
generated path for our approach for different α . The kine-
matic path constraints in Section IV-B.6 are activated and
ensure that the curvature of the generated path is less than
the maximal curvature (0.54) of the single-track model. With
a smaller α , a smoother path can be generated. However, due
to the path-speed decoupling, the optimization result is sub-
optimal and has larger average curvature than the trajectory
generated by CL-RRT.

VI. CONCLUSION

We developed a robust tunable trajectory repairing frame-
work for AVs based on Bernstein basis polynomials and path-

TABLE I: Comparison of curvature.

α=0 α=0.5 α=1 CL-RRT Maximal

Maximal Curvature 0.46 0.46 0.45 0.10 0.54
Average Curvature 0.06 0.08 0.13 0.03 0.54

speed decoupling. We improved the search efficiency for
the critical measures by decoupling the search scheme into
search in the S-T domain and X-Y domain. In addition, we
proposed the concept α −Robustness. It is a generalization
of re-planning and repairing and can be used to balance the
driving comfort against robustness to external disturbances.
The trajectory repairing approach based on random sampling
in the C-space might cause numerous invalid samples and
non-deterministic performance. Heuristics can improve the
sampling efficiency (i.e., [2]) but requires a subtle design. By
contrast, we formulated a unified QP problem with different
kinematic constraints for both speed and path repairing. The
QP formulation ensures that the optimization can be solved
with a limited time cost meanwhile achieving kinematic
feasibility, safety and comfort. Our experiments indicated
typical feasible solutions within 25ms, which is sufficient
for real-time safety-critical applications.
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