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Background: Motion Planning Problem virtual@vehicle

Generating a plan from A to B,
but with... @ O

* High dimension

« Computation time limit ./ U

 Non-holonomic constraints

« Uncertainty and noises

« Scenarios: human interaction, safety critical, traffic rules,
perception/prediction error, occlusion...

Two categories

 Rule-based: Graph search, Sampling-based,
interpolation/roll-out, Optimization...

 Learning-based (end-to-end)
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Background: Related work virtual@vehicle

Automated urban driving
Graph search

Approach: discretize the state space into a graph !
Pros: A general approach. || l _
Cons: Trade-off between discretization and computation time .
(typically computation time more than 100 ms) m|
Automated performance driving o .
20 Di il
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VIRTUAL VEHICLE

Ajanovic, Z., Regolin, E., Stettinger, G., Horn, M., A. Ferrara, 2019. Search-Based
Motion Planning for Performance Autonomous Driving. In IAVSD Vehicles on Road
and Tracks 2019. IAVSD.

Kailin TONG ICRAE2023 4

Ajanovic, Z., Lacevic, B., Shyrokau, B., Stolz, M., Horn, M., 2018 October. Search-based optimal motion planning for automated driving.
In Intelligent Robots and Systems, 2018. IROS 2018



Background: Related work virtual@vehicle

Frenet Frame Planner

Interpolation / roll-out

Approach: use geometric curves to represent vehicle motion
Pros: Suitable for structured road, simple and efficient

Cons: Sub-optimal, limited choices, discretization problem
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Werling, Moritz, et al. "Optimal trajectory generation for dynamic street
scenarios in a frenet frame." 2010 IEEE international conference on
robotics and automation. IEEE, 2010.
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Darweesh, Hatem, et al. "Open source integrated planner for autonomous
navigation in highly dynamic environments." Journal of Robotics and
Mechatronics 29.4 (2017): 668-684.
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Proposed motion planning framework virtual@vehicle
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Main Contributions

« A computationally efficient framework (worst case 55 ms
computation time)

« A* search which integrates risk assessment heuristics

 Validation in realistic simulated scenarios
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Proposed motion planning framework virtual@vehicle

[ 3D Grid Map )
3D grid map Generation Generation
Inputs e e
* ego state, object list, lane waypoints, map info
Outputs B
« 3D grid map atriple (s,7,/) € [Smin;Smax| X% [0,tmax| x {0, -+ ,Ni } Q ” J

Approach
« Adding a time dimension to a 2D space
* Projection into Frenet coordinate system

« Constant speed prediction of moving objects

Fig. 3: Nlustration of motion planning in a Frenet frame. The
vehicle states in a Cartesian frame include (x,y,0,v,a) , which
denote vehicle position, heading, velocity, and acceleration
respectively. They are projected onto the driving reference
line for motion decoupling. (7, v;,q;) represent lateral distance,
velocity and acceleration respectively, while (s,vy,ay) repre-
sent longitudinal quantities. vy and v, are the longitudinal
velocity of tracked object 0 and 1 respectively.
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Proposed motion planning framework virtual@vehicle

4 N
_ Extended Hybrid
Risk Assessment A* Search with
_ o o o Risk Assessment
Time-to-collision is used to model collision possibilities. p——

dgi—MSM  ds;—MSM

S 0
TTCI — Vsi—Vs,j Vs,i—Vs,j =
+-o0 otherwise
. J
Collision risk is defined as Risk assessment for lane change
R(i) = e WITCG—TTCype) Minial Safety Margin (MSM)
i
oy
Collision risk is used as heuristics in A* search .
,
I I dy
= | -
{ Lane change prepartion : Lane change execution
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Proposed motion planning framework virtual@vehicle

4 h
_ _ _ Extended Hybrid
Extended Hybrid A* Search with Risk Assessment A* Search with
_ Risk Assessment
Inputs; 3D grid map ———

Outputs: A* waypoints

Approach
« Search space: (t,5.0,vs.dir) dir € {left, right, forward}. -
: 2 _ 9
« Cost function: cost =wi(vy—vg) AT +waay"AT 3D grid map
vg = min{ve. \/ ates /k(s)} 00 Lane 0 o0 Lane 1
« Heuristic value function:
. 2wi(vi —vg)? V3w (vy—vy)? w0 w0
o) = 21002 VIR0 R
euristics \/1 21-L‘| f W2 3”.*2(”.*1 / H'j_}j 20 20 -
Ego Collision Follower Collision &
risk risk o— 0
Risk he (1) = R(e)+R(i)+e€l|l—1z] LC execution I I I S|
heuristics T R(e)+¢€ |l — 14| otherwise Tis Tie

Lane change cost
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Proposed motion planning framework virtual@vehicle

4 N
_ _ Trajectory
Trajectory Refinement Refinement

Inputs

« A* waypoints

Outputs
« Refined waypoints \ .
Approach L . o
Minimal jerk trajectory optimization
 minimal jerk trajectory generation - 4T ¢ 1o -
J J yd P1 O(Tp) O 0 P1
» Closed-form solution min : 0 0 ;
P1.----PM :
_ PMm 0 0 Om(Tm)] |Pm
dp* = —RppRppdr R - R
P1 d,
st Agg | ¢ | =]
PM | | dw |
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Proposed motion planning framework virtual@vehicle

r "

Velocity Profile
Refinement

Velocity Profile Refinement

Inputs

* velocities in1D

Outputs
 final trajectory \ )
Approach L . . L
Minimal jerk velocity profile optimization
* minimal jerk velocity profile generation LT .
) y P J P1 O(Tp) O 0 P1
 only the number of coefficients and derivatives are different ~ min : 0 0 ;
Pi.----PM : .
pm| | O 0 Om(Tm)| |Pm]
pi| [di]
st Agg | ¢ | =]
PM | | dw |
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Evaluation virtual @ vehicle

WF Simulator of Autoware + internally developed interface — ViFWare

Scenario 1: Overtaking with On-coming Traffic

Use Case 1




Evaluation virtual {} vehicle

TABLE I: Comparison of results in a 450 m route

D T‘Cnn'rr T Cm:'n | K |mt11' v € T:-'I"G?'H
Planner (m) (s) (m=Y) | (m/s) | (m) (rms)
Ours 3.97 4.90 0.04 1.22 0.12 55.0 1
Open 5.68 4.10 0.11 433 | 0.19 | <1002
Planner
(a) OpenPlanner (b) Our approach I Time consists of: search time (54.6 ms). trajectory refinement (0.3
. _ _ o : . ms), velocity profile refinement (0.1 ms) and 3D grid map update
Fig. 8: Use Case 1: Overtaking with Limited Time Window time (0.1 ms).

2 The estimated time is from [6].

Implementation:

C++ based on Robot Operation System (ROS)
Hardware:

a computer equipped with an Intel Core i7-9700 CPU.

(a) OpenPlanner (b) Our approach

Fig. 9: Use Case 2: Giving Right of Way
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Key takeaways and outlook virtual @ vehicle
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A computationally efficient framework (worst case 55 ms i) i
computation time)

Minial Safety Margin (MSM)
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« A* search which integrates risk assessment heuristics

) |
Lane change prepartion E Lane change execution
- \

 Validation in realistic simulated scenarios

Outlook

« Validation with our automated driving demonstrator on
public road
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