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Motivation e Al virtual @) vehicle

Why is Risk-aware Planning important?

« Highly automated driving (HAD) requires the
capability to detect and handle hazardous events
to ensure safety and bring the venhicle to a safe
state (SAE J3016, UN-ECE ALKS).

« Planning is faced with real-world problems, e.qg.,
perception system degradation/failure, or the
change of intention of another vehicle.

Why do we need a Monitoring Device (MonDev)

* Real-time or runtime monitoring
device/functionality to supervise the automated
driving system status to initiate a Minimum Risk
Maneuver.

Why do we need MRM

* Plan a trajectory to bring the vehicle to a safe state
to minimize the overall risk at an acceptable level

Tesla cannot correctly label a carriage

https://www.linkedin.com/posts/activity-6965342247278018560-
d1lyV/?utm_source=share&utm_medium=member_desktop
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Related work Svesidaicd virtual @ vehicle

« Monitoring Device implementation and demonstration [1]

« Minimal Risk Maneuver
virtual @ vehicle

ArchitectECA2030 Demonstrator
(SC4 - Demo 4.4)

 However, a theoretical framework for dealing with
autonomous vehicle hazards has rarely been presented.
This study suggests a risk modeling method inspired by
iIdeas from control theory and introduces a Model Predictive
Control (MPC) Framework to deal with risks in general. 2]

FOR INTERNAL USE ONLY

Use Case 3: safe-
stop on the hard
shoulder

[1] YouTube. (2023a). VIRTUAL VEHICLE ArchitectECA2030 Demonstrator. YouTube. Retrieved
October 2, 2023, from https://www.youtube.com/watch?v=67ldtb56W-4.

[2] Tong, K., Solmaz, S., & Horn, M. (2022, October). A Search-based Motion Planner Utilizing a
Monitoring Functionality for Initiating Minimal Risk Maneuvers. In 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC) (pp. 4048-4055). IEEE.
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A. Problem Formulation

For the system dynamics, we use the common state transi- State transition model
tion model. :
Xp41 =F(Xp, ug) (1)
where x; € R" is a state vector, uy, € R™ is the control input.
To evaluate the risk of a hazard, we use the most common ED:'
definition of risk: risk is the probability times severity [1]. Severity model Probability model

We first define the severity s; of a hazard at time step k. Its
severity model is given by

o feesan—
Skt =S (k1,5 @) N
We denote a hazard as H for the Automated Driving e e e e e e
R R . by Unknown Author is licensed under by Unknown Author is licensed under
System. The state is either /, meaning occurrence of the
hazard, or h, meaning no occurrence of the hazard. The
observation monitoring the hazard at the k-th step is denoted

as zp. We define the probability of hazard conditioned on
observations as pr = p(h|z1,2o,...,2;). Finally, we have Risk model
the risk model:

Tk = Sk * Dk (3)
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Definitions

Definition 1 (Safe Set) The state vector X; in a bounded
space X C R"™ and the hazard-related observation zy in a
bounded space Z. C R™ span a space xy C R"™™. « is an
acceptable risk level, which defines the boundary of the Safe
Set x* C x. The Safe Set represents the normal operation of
the Automated Driving System (ADS).

The risk for a hazard is monitored during the operation of
the ADS. As the standard ISO 26262 requires, a risk mitigation
system keeps the AV safe if a hazard occurs.

Definition 2 (Stability of Risk Mitigation): The risk of a
hazard can be brought back to the Safe Set in [tg, t51] if the
risk is greater than an acceptable risk level o, as shown in

Fig. 1.

Risk mitigation
starts

Fig. 1: lllustration of stability of risk mitigation.

ISO 26262

ArchltectECA2030
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emergency operation
is reached

Emergency operation without an unreasonable level of risk

emergency operation tolerance time interval

New Operating Condition

| Safety mechanism implemented with emergency operation |

Fault detection

Transition to

emergency operation Safe State

Emergency operation

fault detection
time interval

fault reaction emergency operation time interval

time interval

[3] A. Salvi, G. Weiss, M. Trapp, F. Oboril and C. Buerkle, "Safety Implications of Runtime Adaptation to
Changing Operating Conditions," 2022 IEEE 25th International Conference on Intelligent Transportation
Systems (ITSC), Macau, China, 2022, pp. 2444-2449, doi: 10.1109/ITSC55140.2022.9922192.
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Definition 3 (Controllability of a Hazard): If a hazard
occurs, there exists a vector of Uy that can bring the risk
of a hazard to the Safe Set in [tg, Tro], and the hazard is
controllable. t¢o is the deadline for tolerating the existence of
a hazard.

Definition 4 (Observability of a Hazard): If there exists
a vector of Observations zy, measured by the ADS which can
estimate the probability of a hazard in [to, tgs], the hazard is
observable. tgs is the deadline for detecting the existence of
a hazard.

Not Controllable

Observable? Observable?

Oct 2023/ Tong, Guo, Solmaz, Steinberger, Horn Risk Monitoring and Mitigation for Automated Vehicles: A Model Predictive Control Perspective © VIRTUAL VEHICLE 6
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Software & Hardware Architecture
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Fom === = o ——
Risk > Risk

Monitoring [ | Mitigation

Fig. 2: Illustration of the proposed architecture for our AD
demonstrator. The dashed block denotes hardware, while the
solid block denotes software. We monitor the hardware and
software of SENSE and PLAN, which are marked with red
color. The Risk Monitoring and Mitigation (RMM) Module
on the lower side is an additional software block to monitor
and mitigate the risk.

Robust Tunable Trajectory Repairing for Autonomous Vehicles Using Bernstein Basis
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MPC Framework Qﬁfj ESRIUM virtual@vehicle

Uy

Plant

The proposed RMM module monitors the risk online and
triggers risk mitigation. For any nominal planner, the Risk Ik
Mitigation Module is a supervisory planner that enforces the ‘ .
risk to return to y® if a hazard happens (its risk is higher than Risk prediction model [—0
the acceptable level «). To simplify our formulation, we let

u; € R and u; be the control until the end of the prediction

y

horizon N,. Motivated by Safety Barrier Functions [7], we —
have the following quadratic programming (QP) problem with Optimization
hard constraints:
u* —argmin ||, — upl|?
ﬁgl:.:EU || ||Q (4) N, prediction horizon
st. m<a, k+Ng<i<k+DN, N, control horizon
where up is a vector of length N, where each element Nq deadline
is the output from a nominal planner at time step k. Ny Q weighting matrix
is the deadline for bringing the n;k less than a U, = 7 predicted risk vector at step k
(Uks Uk41, - - -, Uk4N,, - - - s Uk+N,—1] ", Where N, is the con- r risk at step k
trol horizon. If N, is smaller than N,, after k + NN, step, the k _
control is same as g4 .. U nominal output vector
Uy control vector at step k

Robust Tunable Trajectory Repairing for Autonomous Vehicles Using Bernstein Basis

Sep 2023/ Tong, Solmaz, Horn, Stolz, Watzenig Polynomials and Path-Speed Decoupling



Use Case 1: Hardware Hazard Q\Q_ji’? ESRIUM virtual@vehicle

Camera Offline: MPC Problem
o o u* =argmin [Tk — uol[g
« Considering an automated vehicle is driving in i,
a suburban area with ACC (Adaptive Cruise i1
Control), we envisage acritical hazard where st —yatv, —v < Z ATugyj < Vot vs — vy,
the camera is offline, and the vehicle has no S 7=0
redundant sensor configuration. Hence the t=Na,Na+1,..., Np,
ACC function cannot continue. 0 < Ukyi < Vmaa,t =1,2,..., Ny,
o U; € [Umin, Umaz),t =k, k+1,...,k+ N, — 1,
« State transition model (9)
V1 = Uk + ATy, N, prediction horizon
N, deadline
« Severity model a risk threshold
weighting matrix
sk = (vk — 1’13)2- ¢ g : g
Vg velocity at step k
* Probability model Dic probability at step k
Sk severity at step k
1, ifz,=1 :
P = - + Ug nominal output vector
0. otherwise _ :
- Uy, control (acceleration) vector at step k

Oct 2023 / Tong, Guo, Solmaz, Steinberger, Horn Risk Monitoring and Mitigation for Automated Vehicles: A Model Predictive Control Perspective 9
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virtual {} vehicle

Use Case 1: Hardware Hazard

The effect of Deadline Nd Velocity ]
« Smaller Nd - quicker response (shorter transition time) 20

« Larger Nd - slower response (longer transition time)

v [m/s]
3

ISO 26262 Acceleration — Ny=60

emergency operation
is reached 0 - Nd =50
[1 — Ny=40
Emergency operation without an unreasonable level of risk t -2

emergency operation tolerance time interval

B New Operating Condition T‘iE’i _4-
©

[ Safety mechanism implemented with emergency operation |

Transition to _ t 61
Fault detection emergency operation Emergency operation Safe State -
fault detection fault reaction emergency operation time interval
time interval time interval
-8

Oct 2023 / Tong, Guo, Solmaz, Steinberger, Horn Risk Monitoring and Mitigation for Automated Vehicles: A Model Predictive Control Perspective 10



Use Case 2: Software Hazard virtual \} vehicle

Error of Perception Algorithm Start

'

Object detection

« ADS faces significant challenges in accurately perceiving
the surrounding environment, including identifying and
continuously tracking surrounding objects. A failure of the
perception module often results in severe traffic accidents

objects in the last
20 frames)

dd into Monitoring
MNo—»| list (untracked

Confirmation problem in object tracking

Yes
v

[ Tracking ]

« Verify tracking and triggering MRM if object tracking fails

f hazard exist"
(objects with similar
features, e.g. color, aspecp

(e}

ratio, appear more * Yes
than four times
Fig. 4: Ground Vehicle Targets: Toyota Prius (left) and Car- ACC Input No
laCola (right). The perception system can track the Toyota Vehlig'e
: : . ‘ " molde RMM | Risk Monitoring and
gmis éJr]ecnse]y. However, it occasionally loses track of the lnput{ Mitioston (R }7
‘arlaCola.

Oct 2023 / Tong, Guo, Solmaz, Steinberger, Horn Risk Monitoring and Mitigation for Automated Vehicles: A Model Predictive Control Perspective 11



Use Case 2: Software Hazard

 State transition model

Tr+1 = Azr + Bug,

1 AT2
where r;, = [fk‘, A= [3} &15:”] B = [Qig ] and
Ik

YU = C-Tk-*.

« Severity model
S = Uk

* Probability model

1, if a perception error is detected
Pk = .
0, otherwise

Oct 2023 / Tong, Guo, Solmaz, Steinberger, Horn
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MPC Problem
u* —argmin ||Ox — uﬂ||2Q
ug
s.1. UVk+i i LT'ﬁi:ﬁrd,ﬁ'Tdﬂ_l,.....ﬁrp (15)

0 < Uk+41 E Umax» 1= 1 c e ,f\'rp

N, prediction horizon

N, deadline

a risk threshold

Q weighting matrix

Vg velocity at step k

Dk probability at step k

Sk severity at step k

Uy nominal output vector

Uy, control (acceleration) vector at step k

Risk Monitoring and Mitigation for Automated Vehicles: A Model Predictive Control Perspective 12



Use Case 2: Software Hazard Qiﬁgjﬁ SLELA virtual E\} vehicle

Simulation Environment

Carla Simulator + Vision-based ACC based on Autoware.Al

AUTOWARE.
Scenarios
TABLE I. Euro NCAP ACC Car-to-Car test scenarios with
Stationary and Moving Target (straight roads) [12]
£
Scenarios Vehicle under Test  Global Vehicle Target | __._._ subjectvehicle | Sy _  yE=rjtarget vehicle
Cartr-Cox Roar Siaf 70, 80, 90, ___[LE_B _______ “____ ______
(é*gg"} ar feat SLHonaty 100, 110, 120, 0 km/h
° 130 km/h
Car-to-Car Rear Moving 80, 90, 100, . -
- 110, 120, 130 20 km/h Automatic stop capability test ISO 15622:2018(E) (2018)
(CCRm) m/h
80, 90, 100,
110, 120, 130 60 km/h —— - ~—— \
km/h = o — o —mmmmy
[4} Euro NCAP, “Euro NCAP Assisted Driving - Highway Assist Systems Test and Assessment ﬁ

Protocol v1.0,” Euro NCAP, Tech. Rep., September 2020. [Online]. Available:
https://cdn.euroncap.com/media/58813/euroncap-ad-test-and-assessment-protocol-v10.pdf

Oct 2023 / Tong, Guo, Solmaz, Steinberger, Horn Risk Monitoring and Mitigation for Automated Vehicles: A Model Predictive Control Perspective 13



Use Case 2: Software Hazard

TABLE II: Simulation Results: Collision Avoidance Rate with 225
respect to Euro NCAP ACC Car-to-Car test scenarios with 0.0,
Stationary and Moving Target (straight) 17'5
. . . Hazardous, Hazardous, |
Scenario Original i RMM without RMM 7 150
70 kn/h vs. 0 km/h 100% 60% 0% . £ 12.51
80 km/h vs. O km/h  100% 70% 0% Velocity 2 loo.
90 km/h vs. 0 km/h 100% 409% 0% '
100 km/h vs. 0 km/h - 100% 40% 0% 7.51
110 km/h vs. 0 km/h 0% 0% 0% 5 0.
120 km/h vs. 0 km/h 0% 0% 0% '
130 km/h vs. 0 km/h 0% 0% 0% 254, 0
80 km/h vs. 20 km/h  100% 70% 0% 0 1 2 3 4 5 6
90 km/h vs. 20 km/h  100% 60% 0% t[s]
100 km/h vs. 20 km/h - 100% 50% 0%
110 km/h vs. 20 km/h - 100% 50% 0%
120 km/h vs. 20 km/h - 100% 409% %
130 km/h vs. 20 km/h 0% 0% 0% 0 — 0w~ T
80 km/h vs. 60 km/h  100% 80% 0% Y
90 km/h vs. 60 km/h  100% 70% 0% L
100 km/h vs. 60 km/h  100% 80% 0% 5]
110 km/h vs. 60 km/h  100% 70% 0% & ,
120 km/h vs. 60 kmv/h  100% 609% 0% 731 | 7T without RMM
130 km/h vs. 60 kmv/h 100% 50% 0% Acceleration = 4] — with RMM
Average 78.94% 46.84% 0% ©
_5_
"Hazardous" refers to scenarios where the ego vehicle is —6 1
following a CarlaCola car, and a tracking error occurs. ~71L |
"Original " refers to scenarios where the ego vehicle is 61 2 3 4 5 6

following another Carla car, and no tracking error occurs.

Oct 2023 / Tong, Guo, Solmaz, Steinberger, Horn Risk Monitoring and Mitigation for Automated Vehicles: A Model Predictive Control Perspective 14



Use Case 2: Hardware Hazard oo % ESRIUM virtual@vehicle

Without RMM (Risk Monitoring and Mitigation)

Oct 2023/ Tong, Guo, Solmaz, Steinberger, Horn Risk Monitoring and Mitigation for Automated Vehicles: A Model Predictive Control Perspective © VIRTUAL VEHICLE 15



Use Case 2: Hardware Hazard oo % ESRIUM virtual@vehicle

With RMM (Risk Monitoring and Mitigation)

Oct 2023/ Tong, Guo, Solmaz, Steinberger, Horn Risk Monitoring and Mitigation for Automated Vehicles: A Model Predictive Control Perspective © VIRTUAL VEHICLE 16



Key takeaways & PR virtual@vehicle

. (1}

Conclusion K , Plant
« Bridging functional safety and control theory concepts by -

iIncorporating definitions such as risk mitigation stability, ‘

g ags f n

hazard controllability, and hazard observability. Risk prediction model 30
* A novel Model Predictive Control (MPC) framework that

addresses the handling of hazards.
- The effectiveness of the framework is demonstrated through Optimization

two representative examples in simulation.
Outlook
« Extending the proposed framework to monitor and mitigate P

various hazards in more diverse scenarios.

Oct 2023 / Tong, Guo, Solmaz, Steinberger, Horn Risk Monitoring and Mitigation for Automated Vehicles: A Model Predictive Control Perspective 17
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