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Kurzfassung

ESRIUM ist ein EU-Projekt mit Schwerpunkt auf Straßenschäden und daraus resul-
tierenden Problemen. In dieser Arbeit werden Konzepte des Reinforcement Learning
zur Vermeidung von Straßenschäden untersucht.

Die Arbeit führt zunächst in das Problem der Straßenschäden ein, das in der Forschung
zum autonomen Fahren nicht ernst genommen wird. Obwohl in dieser Arbeit nur die
Bewegungsplanung auf der Grundlage bekannter Straßenschäden betrachtet wird, ist
das Problem der Straßenschadensvermeidung kein eigenständiges Thema, sondern
bedarf der Unterstützung durch viele andere Techniken. Daher wird der technische
Hintergrund einschließlich des allgemeinen autonomen Fahrsystems, der Computer
Vision zur Erkennung von Straßenschäden und der I2V-Techniken erläutert und die
einschlägige Literatur gesichtet. Für das eigentliche Bewegungsplanungsproblem wer-
den die jüngsten Forschungen zu Bewegungsplanungsalgorithmen und Reinforcement
Learning zusammengefasst.

Herkömmliche Bewegungsplanungsalgorithmen werden dann erläutert und mit Algo-
rithmen des Reinforcement Learning verglichen. Anhand der Benchmarks können wir
die Vorteile des RL-Ansatzes für das Problem der Vermeidung von Straßenschäden
erkennen. die Details des Reinforcement-Learning-Konzepts wird dann erläutert und
die theoretische Grundlage für die technische Umsetzung ist geliefert. Abschließend
werden der Entwurf des Szenarios und die Aufbereitung des Trainingsdatensatzes
beschrieben. Die abstrakte Problemformulierung des Straßenschadenproblems erfolgt
ebenfalls im Rahmen des Reinforcement Learning.

Zusammenfassend erklärt die Arbeit die Notwendigkeit der Forschung auf dem Gebiet
der Straßenschäden, gibt einen Überblick über die Literatur im Bereich der Bewe-
gungsplanungsalgorithmen, formuliert das Problem der Straßenschadenvermeidung in
einem Reinforcement Learning Rahmen und stellt den Trainingsrahmen auf.
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Abstract

The ESRIUM project, which is centered on the issue of road damage, serves as the
foundation for the thesis. This thesis investigates the application of reinforcement
learning theory to the problem of road damage avoidance.

The thesis begins by outlining the issue of road damage, which has received little
attention in studies on autonomous driving. Although the road damage avoidance
problem is not a separate topic and requires the support of many other strategies,
this thesis simply takes into account mobility planning based on knowledge about
known road damage. This is followed by an explanation of the technical background,
which included a general autonomous driving system, computer vision for spotting road
damages, and Infrastructure-to-Vehicle(I2V) approaches, as well as a study of pertinent
literature. The most current studies on motion planning algorithms and reinforcement
learning are also summarized, for the motion planning problem itself.

Then, conventional motion planning algorithms are described and contrasted with meth-
ods for reinforcement learning. The benchmark studies show the potential advantages
of applying reinforcement learning solution to the road damage avoidance challenge.
The thesis then goes into further depth on the idea of reinforcement learning and
offers the theoretical underpinnings for its technical application. Lastly, a description
of the scenario design and training dataset preparation is provided. The road dam-
age problem’s abstract formulation is also carried out within a reinforcement learning
framework.

To sum up, the thesis discusses the importance of studying road damage, reviews
the research on motion planning algorithms, formulates the challenge of preventing
road damage within the context of reinforcement learning, and establishes the training
environment.
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1 Introduction

Walking into the 2020s, self-driving cars are no more a fantasy but a future in com-
ing. An autonomous driving system is a complex system with massive sub-topics to
research. With the development of AI technology like deep learning, the amount of re-
search applying learning approaches to autonomous driving systems shows significant
growth. In this thesis, the possibility of using reinforcement learning in motion planning
under the scenario of road surface damage is discussed. The work is based on the
project ESRIUM, so it inherits some settings to maintain coherence.

This chapter will introduce the use case of road damage and the project ESRIUM,
along with the structure of the remaining parts of the thesis.

1.1 Road Damage

Road damage is a very common phenomenon of infrastructure destruction. Transporta-
tion systems, which play the most important role in the daily activities of human beings,
are under enormous operational pressure. The wear and tear over the years make
road surface damage inevitable. Not to mention that natural causes such as landslides,
weathering, and oxidation will definitely make the pavement more fragile. While most
crashes are due to human factors, which is one of the reasons why autonomous
driving systems were introduced, poor road conditions are also a threat to passengers’
safety. A study from the Pacific Institute for Research and Evaluation highlights that
roadway condition is a contributing factor in more than half (52.7%) of the nearly 42,000
American deaths resulting from motor vehicle crashes each year and cost the U.S.
economy more than $217 billion each year [1].

Although there is a dedicated team responsible for pavement maintenance, the road
network is so large that it is costly to achieve comprehensive road damage detection
by traditional methods. The maintenance work itself will disrupt traffic and is very
expensive, making it difficult to maintain the road surface in good condition at all times.

In fact, the cost to maintain a mile of road per year in the U.S. is in the range of
$782-$208,736, and the average cost for highways is $28,020 [2]. And the costs of
road damage go beyond maintenance. The concept of Vehicle Operation Cost (VOC)
should be introduced in the problem. VOC by definition are the costs associated with
operating a motor vehicle. It is composed of fuel, oil, tires, repairs and maintenance,
and interest and depreciation costs. VOC depends on the quality of the road surface
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1 Introduction

as measured by its roughness [3]. When a vehicle damages the road surface and
increases its roughness, it thereby increases the vehicle operating costs of subsequent
vehicles. Normally VOC is 10-100 times to maintenance cost [4]. Consequently, road
damage will have a huge and long-term impact on the economy.

It has been mentioned previously that road conditions, as well as human factors, are
both contributing factors to car crashes. In spite of the fact that human error is the
major cause of car accidents, it is unrealistic to place hopes on improving road users’
driving abilities or regulating their driving behavior in order to ensure driving safety.
However, with the technology we have today, we can avoid road damage, maintain it in
a timely manner, and provide algorithms to assist drivers to make reasonable and safe
decisions when they encounter road damage. Therefore, research on road damage is
necessary to improve road driving safety.

Tarmac and asphalt are typically durable pavements. Asphalt surfaces are usually very
robust and most of the damage you see such as potholes, alligator cracks and uneven
surfaces are often the cumulative result of a range of causes. Heavy vehicles can put
a lot of pressure on the surface itself. The consistent stress can cause weaknesses
to emerge in the road surface, which as a result causes cracking. Leaking oil, which
is in small amounts and cleaned quickly is not always an issue, but if sits on the
asphalt longer, it will seep in and ruin the top layer, as well as being exceptionally
difficult to repair and remove. Besides human factors, nature also plays a role. Water
is one of the biggest causes of road surface damage. Normally tarmac seals and
pavement preservation can avoid significant damage to the road surface from water,
but if the surface is cracked, water seeps in and weakens the base course layer, which
causes depressions. What we need to pay more attention to is that if that base layer
is damaged, the road will continually have problems with traffic load and be more
vulnerable to cracks and potholes until the road is completely repaved. Since asphalt
depends on a binder to hold together the rocks, aggregates and sand that make up
the surface, it could face the risk of the dissolution of the binder due to ultraviolet light.
Over time, the road will resemble the loose arrangement of gravel and starts raveling.
Resurfacing then will be necessary. Oxidation can not only age people but also road
surfaces, making them less flexible and more susceptible to being cracked under heavy
loads. The consistent movement of tectonic plates, along with earthquakes and other
natural phenomena, can cause a surface to shift. Even though it will settle over time,
cracks, sinkholes, and other major damage will be inevitable. The main causes of road
damage are shown in Fig. 1.1 [5].

Road damage differs from other on-road static obstacles in the feature of different
severity levels. In [6], four levels of road damage severity are identified with qualitative
descriptions. Four road damage severity levels due to landslides are listed from level A
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1 Introduction

Figure 1.1: Main causes of road damage [5]

to level D. Under damage level A, there are rarely cracks and deformations, and no
speed reduction of the vehicle is required; under damage level B, damage includes
pavement deformation and cracks and/or roadside destruction, without affecting the
functioning of the road; under damage level C, pavement deformation is so substantial
that traffic lanes and/or the roadside are affected, and necessary restrictions such
as alternative pass and traffic light regulations are required; under damage level D,
displacements are of the same order of magnitude as for level C, but with the vertical
component prevailing and providing the possibility for complete destruction and loss
of the pavement continuity, and the functioning of the road is seriously affected. The
demonstration is shown in Fig. 1.2.

In summary, although road damage is common and unavoidable, it has an important
impact on traffic safety, comfort and economy. Therefore, road damage is a use case
that deserves to be studied and to have state-of-the-art technology applied to it. This
is also the starting point of the project ESRIUM.

3



1 Introduction

Figure 1.2: Road damage severity classification: (a) no/slight damage, (b) moderate
damage, (c) severe damage, and (d) partial/total destruction [6]

1.2 The project ESRIUM

ESRIUM is the abbreviation for "EGNSS-enabled Smart Road Infrastructure Usage
and Maintenance", which is a Horizon2020 project aiming at increasing the safety and
energy efficiency of transport on European roads. Its key in the novation is a digital
map of road surface and road wear. The mission is an EGNSS-based digital road
wear map generating routing recommendations based on road damage locations, road
damage type, recent repair interventions and road damage prediction [7].

With the development of autonomous driving systems, Advanced Driver Assistance
Systems (ADAS) are widely equipped on modern vehicles to reduce the driver’s cogni-
tive load. Although the concept of ego-vehicle intelligence is popular, depending on
the on-board sensors to achieve a higher autonomous level is still challenging. But
through introducing infrastructure assistance into the decision-making process of auto-
mated vehicles, a higher level and more robust autonomy can be achieved to ensure a
safer drive. Infrastructure communications can be used to convey dynamic traffic and
hazard information ahead and give real-time routing and driving recommendations to
Connected Automated Vehicles (CAV) beyond the range of on-board sensors.

The decision-making process of automated vehicles is fully based on the on-board
sensor information nowadays. Due to the limitation of the information sources, more
automated vehicles especially heavy trucks driving on the road will lead to more road
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1 Introduction

damage in the form of rutting, because they may all choose to drive in the middle line.
Inspired by this, ESRIUM investigates infrastructure assisted routing recommenda-
tions utilizing C-ITS(Cooperative Intelligent Transport Systems) communications. [8]
presents four use cases: 1. AI-based road damage prediction to support enhanced
road maintenance planning, 2. Routing Recommendations based on the road wear
map, provided via C-ITS messages (Manoeuvres within lane and between lanes) 3.
C-ITS Message ‘GNSS-correction data’ provision. 4. Wear map content provision. [9]
and [10] study two use case scenarios: a in-lane off-set recommendation to avoid
accumulative pressure which causes rutting and a strategic lane change and lane
utilization information to help CAVs to avoid road damage.

With the existing achievements, this thesis will explore the possibility of using the
reinforcement learning concept to avoid road damage with different severity levels by
giving recommendations of deceleration and off-set.

1.3 Structure of the thesis

Chapter 2 will introduce the technical background of the thesis, including the literature
review in the field of autonomous driving systems, computer vision in road damage
detection, I2V and reinforcement learning. Chapter 3 lists the commonly used motion
planning algorithms like A* search, CL-RRT, convex optimization and potential field
and analyses their pros and cons in the road damage avoidance problem as a bench-
mark to the method of reinforcement learning. Chapter 4 will explain the concept of
reinforcement learning along with relevant algorithms. With the theoretical foundation,
a technical realization of reinforcement learning in road damage avoidance will be
implemented in chapter 5, including the scenario design, road damage generation
and problem formulation in the reinforcement learning framework. Chapter 6 draws a
conclusion in the end, concluding the research and discussing potential future works.
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2 Technical Background

During the last decades, advances in artificial intelligence and control systems have
allowed self-driving cars to become possible. ADAS has already significantly improved
road safety [11]. The assistance of infrastructure can help to further enhance road
safety and driving comfort [12]. This thesis is about using the reinforcement learning
concept to realize an accurate road damage avoidance according to the damage
severity level. Before we actually implement the approach, there are still several
questions to be solved:

• If the autonomous driving system technology of the current level can realize the
vision for road damage avoidance?

• What kind of technologies are needed in this process?

• If the road damage can be detected?

• How does the vehicle get the road damage information?

• Why should we use reinforcement learning?

• Can’t conventional motion planning algorithms solve the problem?

In this chapter, we will take a glimpse of the development of relevant technologies to
answer these questions.

2.1 Autonomous Driving System

Road traffic crashes cause approximately 1.3 million people’s death annually according
to the report of WHO in 2018. Between 20 and 50 million people suffer non-fatal injuries,
many of which induce a disability in the end. With such a big live cost, road traffic
injuries are the 8th leading cause of death among all ages, while other causes are
all diseases. For the death of children and young adults aged 5-29 years, road traffic
injuries are even the leading cause [13]. Meanwhile, as the result of the survey from
NHTSA, 94% of all road accidents are caused by human error, like speeding, drunk
driving, distracted driving and so on [14]. Looking at all these brutal statistics from
another point of view, we can see that the road traffic crashes are not only the deadliest
killer but also an opening for human intervention, through preventing human error to
avoid car crashes, leading to an extension of human lifespan. Autonomous vehicles
can also benefit specific groups who cannot drive themselves, for example, both young

7



2 Technical Background

Figure 2.1: SAE Levels of driving automation [15]

and old people and people with disabilities. Autonomous driving systems can also
optimize driving behavior to reduce fuel consumption and reduce traffic congestion
through planning.

The commonly used taxonomy of autonomous driving system is defined by the SAE
Standard, under which ADS has six levels of driving automation, ranging from no driving
automation (Level 0) to full driving automation (Level 5), based on if it is equipped with
the autonomous capabilities like automated lateral/longitudinal control, OEDR (Object
and Event Detection and Response) and complete/restricted ODD (Operational Design
Domain) [15]. A detailed explanation of each level is shown in Fig. 2.1. The function
studied in this work assists the driver in changing both speed and steering angle, so it
is a Level 2 autonomous driving system function according to the SAE standard.

Nowadays, ADAS are commonly equipped on vehicles providing assistance for drivers.
ADAS corresponds to the level 0 to level 2 autonomous driving system in the SAE
standard, and it can provide functions including adaptive cruise control, lane keeping
assistance, and automatic emergency braking. But the pursuit of a higher autonomous
level or fully autonomous vehicles continues unabated. In 2020, Waymo, formerly
known as the Google self-driving car project, operated a commercial self-driving taxi
service in USA and expanded the service to the public, which drags the vision of
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2 Technical Background

introducing ADS into people’s daily life closer.

With the increase in public attention and the influx of capital, a great deal of research
on autonomous driving systems continues to be conducted. A common approach to
system architecture has been established over the years. Most autonomous driving
systems divide the immense task of autonomous driving into several subcategories
and employ a range of sensors and algorithms on different modules. Recently, end-to-
end driving has started to emerge as an alternative to the modular approach. Deep
learning models have come to dominate many of these tasks. At the application level,
the individual core functions are usually divided into localization, mapping, perception,
planning, vehicle control and human-machine interface. This thesis uses the learning
method to deal with the motion planning problem.

2.2 Road damage detection and recognition

The automated vehicles are normally equipped with LiDAR(Light Detection and Rang-
ing), cameras and radars to detect the surrounding environment. Road damage can
be captured by on-board sensors like laser line-scan cameras and 3D cameras, which
create images with high quality and resolution. This method is used by some agencies
to perform pavement condition surveys. However, such imaging equipment mounted
on dedicated vehicles is expensive and difficult to extend to local agencies with a
limited budget. A low-cost method capable of comprehensively surveying road surfaces
is required. The images from smartphones and drive cameras reduce the cost of
collecting data, but also presents challenges to computer vision [16].

To meet this challenge, in 2018, the Japanese research team hosted the IEEE BigData
Cup to evaluate the contemporary methods towards this problem. 54 teams from all
over the world participated in the challenge, and several novel methods were proposed
for improving the accuracy of automatic road damage detection system. These methods
were utilized by several municipalities in Japan after and challenge. The practical use
and the feedback of government agencies suggested that more robust algorithms
are needed. Moreover, most of the methods are limited to road conditions in a single
country. To solve these problems, Global Road Damage Detection Challenge (GRDDC)
is held in 2020. In addition to the road damage images from Japan, datasets from India
and Czech Republic were also augmented, which leads to the data volume tripled,
comprising 26620 images [8].

The main tasks of GRDDC’2020 is classification of road damage and detection of the
location of road damage. Out of the 121 teams, team IMSC won the first prize with
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a method based on ultralytics-YOLO (u-YOLO)[17]. YOLO is an abbreviation for ’you
only look once’, it’s a state-of-the-art, real-time object detection system. The proposed
approach synthesized images using Python Augmenter and input them along with
the existing images to the trained u-YOLO to get multiple predictions about the road
damage classification and location, of every test image. By filtering the predictions, an
improved accuracy is achieved. Regarding the u-YOLO, they employed the ensemble
learning method, using different combinations of hyperparameters to generate different
trained models. The best performed models are selected, and each image is passed
through all the selected models. During this process, the prediction variance is reduced
and the accuracy is improved [18]. This combination of the Ensemble Model and
Ensemble Prediction providing the highest accuracy with the cost of speed of detection.
Most of the other winning methods executed data augmentation and applied ensemble
learning. During the training process, YOLO models and variant R-CNN models are
most used, which both are state-of-the-art algorithms accomplished by the development
of computer vision. The GRDCC will in coming years introduce more tasks like severity
analysis and the road damage classes will also be extended.

The development of computer vision in road damage detection offers a potential
method, by which the data is easier and cheaper to get. That would extend the
scenarios wider to other countries and regions and thus extend the application scope
of road damage avoidance algorithms.

2.3 Vehicle-to-Infrastructure

In addition to the autonomous driving system solution, connected cars are also an
important solution to improve road safety and increase traffic efficiency. In contrast
to self-driving cars that need to be equipped with sophisticated sensors, connected
cars only need to be equipped with communication devices that allow them to access
the Internet or communicate with surrounding wireless devices. Connected vehicle is
an Internet of Things(IoT) technology with broad implications from connected enter-
tainment systems that connect with the driver’s mobile phone to Internet-connected
vehicles that have bi-directional communication with other vehicles, mobile devices and
city intersections, which is the key concept of V2X [19]. Vehicle-to-Everything(V2X) or
Car-to-Everything(C2X) refers to the communication of connected cars with any other
factors. Vehicle-to-Infrastructure is a subtype of V2X communication, which enables
connected cars to communicate wirelessly with devices in their environment.

V2I has a wide range of use cases. [20] uses I2V integration of Adaptive Cruise Control
(ACC) and the Variable Speed Limit (VSL), a roadside control method, to reduce the
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Figure 2.2: A use case of I2V communication [25]

risk of rear-end collisions. In the scenario of intersections, [21] uses the I2V system
to analyse the trajectories of cars, bicycles and pedestrians within an intersection to
determine a potential collision and update the information with drivers to guide them
take maneuvers to avoid an accident. [22] presents a complete traffic sign recognition
system based on on-board vision sensor with the help of I2V communication, using
a RF particle filter tracking system, to improve the recognition accuracy. The recent
research works on the combination of V2V and V2I, and applies it to energy man-
agement for hybrid vehicles[23], and to road weather and traffic condition information
exchange[24]. In short, with the support of infrastructure, our transportation can be-
come safer and smarter. Fig.2.2 demonstrates a digital infrastructure on the motorway,
showing a comprehensive usage of information from infrastructure.

I2V technology C-ITS is also used in the project ESRIUM. C-ITS means Cooperative
Intelligent Transport Systems, it is a WLAN-based radio system for the exchange of
safety-relevant information between vehicles and the road(e.g. accident report, traffic
jam, breakdown, natural events, etc.) [25]. The communication process is shown in
Fig.2.3. During the process of I2V, the road sends information, comparable to a radio
signal. Anyone who receives it can use it. There is no direct connection between
the receiver and the transmitter. Receiving the information is completely anonymous.
Anyone who wants to communicate in this way must register. Every message sent
contains a certificate from the sender. This ensures that you always know who is
sending the information and that you can trust the content of the messages. In the
process of V2I, the vehicle sends information, the road receives it. Vehicles must
also register and attach a certificate to the messages. Special protective measures
are used to ensure that data is completely anonymized and no inference to personal
data is possible. The central station is responsible for traffic management and other
information/data processing, it can transmit data in a bidirectional manner with roadside
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Figure 2.3: I-CTS structure [26]

units, depending on the needs of I2V or V2I. In the project ESRIUM, EGNSS positon
will be received by the central station and the EGNSS-correction data will be sent to
end-users to correct the vehicle position that the on-board ADAS system is based on,
in order to ensure the high-precision positioning and that ADAS systems are working
correctly. Besides, C-ITS will also provide routing recommendations to vehicles.

2.4 Motion Planning Algorithms

The core functions of autonomous vehicles include localization, mapping, perception,
planning, vehicle control and human-machine interface, and each function needs
the cooperation of software and hardware. An architecture of autonomous vehicle
consisting of both software and hardware parts comprises these functions, and splits
each function into smaller tasks. A general hierarchical scheme of autonomous vehicle
can be found in [27], [28] and [29]. [30] provides a simplified architecture, dividing it in to
three layers: (1) perception layer, (2) planning layer, and (3) trajectory control layer [31].
These three layers are sequentially connected in the order as mentioned, as shown in
Fig.2.4. Among them, the planning layer is the core layer of the software architecture of
AV. This layer is responsible to decide best driving behavior and generates a collision
free local trajectory to follow at each time instant. There are three main features of the
planning layer, (1)route planning, (2) behavior planning, and (3) motion planning (path
planning and trajectory planning). A route can be defined as a trip from initial position
to the final destination through the road network. Driving behavior planner decides
safe driving actions and generates a safe, comfort and feasible trace to follow. A path
is a sequence of way-points of independent attributes like position, orientation, linear
velocity, angular velocity, acceleration, and steering angel etc, but without considering
mechanical limitation of vehicle. While a trajectory can be seen as a sequence of
feasible spatio-temporal states of vehicles (time varying way-points), taking kinematic
constraints into account.
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Figure 2.4: Software structure in autonomous vehicles [30]
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The Motion Planner subsystem is responsible for computing a trajectory from the
current self-driving car’s State to the current Goal. The initial state and final goal can
be defined according to demand, with the combination of independent attributes like
position, orientation, linear velocity, and angular velocity etc. This trajectory must follow
the Path defined by the Behavior Selector subsystem as closely as possible, while
satisfying car’s kinematic and dynamic constraints, and providing safety and comfort
to the passengers. Several motion planning algorithms have been proposed in the
literature. In this thesis, we will focus on the on-road motion planning aiming at planning
trajectories that follow the route, which differs from unstructured motion planning, in
which there are no lanes and, thus, trajectories are far less constrained [32].

Methods for motion planning can be mainly categorized into four classes: graph search
based, sampling based, interpolating curve based, and numerical optimization based
methods [33][34].

In motion planning, the basic idea of traveling from the current state to the current
goal is to traverse a state space, which is often represented as an occupancy grid
or lattice that depicts where objects are in the environment. Thus, graph searching
algorithms can be implemented, visiting the different states in the grid, to find a solution
or not to the planning problem [33]. A basic graph searching algorithm is Dijkstra
Algorithm. It can find single-source shortest path in the graph. [35] implemented it in
multi-vehicles simulations. Then an extension of Dijkstra Algorithm, called A* Algorithm,
is developed to enable a fast node search applying heuristics. Several applications in
mobile robotics have used A* Algorithm as basis for improvement, such as the dynamic
A∗ (D∗)[36], Field D∗ [37], θ∗ [38], Anytime repairing A∗ (ARA∗) and Anytime D∗

(AD∗) [39], among others. A hybrid A∗ algorithm served as part of the DARPA Urban
Challenge in the Standford automated Vehicle Junior [40]. State Lattice Algorithm is
another representative graph search algorithm, which is based in local queries from a
set of lattices or primitives containing all feasible features, allowing vehicles to travel
from an initial state to several others. [41] decomposed environment in a local variable
grid, depending on the complexity of the maneuver, and [42] used the spatio-temporal
lattices to execute the graph searching.

Another motion planning method is sampling based. A sampling based planner tries to
solve timing constrains in high dimensional spaces. The approach executes a random
sampling in the state space, looking for connectivity inside it. The drawback of this
method is that the solution is suboptimal. Rapidly-Exploring Random Tree (RRT) is
a in motion planning field commonly used sampling based algorithm. It consider the
non-holonomic constraints, such as maximum turning radius and momentum of the
vehicle. MIT team uses RRT at DARPA Urban Challenge [43], but the resulting path is
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not optimal, it’s jerky and not curvature continuous. [44] developed a new approach,
named RRT ∗, to converge an optimal solution.

Interpolating Curve Planners take the advantage of Computer Aided Geometric De-
sign(CAGD) in path smoothing, inserting a new set of data within the range of previously
known set and generating a new set of data (a smoother path), to improve the trajectory
continuity along with considering the vehicle constraints and the dynamic environment
the vehicle navigates. Line and circles[45], Clothoid curves[46], polynomial curves[47],
Bézier curves[48] and spline curves[49] are used to smooth the path.

Numerical Optimization methods aim to minimize or maximize a function subject to
different constrained variables. [50] and [51] uses numerical optimization respectively to
smooth the previously computed trajectories, and to compute trajectories for kinematic
constrains.

Besides these traditional algorithms, various Machine Learning and Deep Learning
Algorithms are more often used in Autonomous Driving Architectures for different tasks.
In the field of motion planning, [52] employed the Deep Deterministic Policy Gradient
(DDPG) algorithm for calculating the acceleration of the vehicle; [53] uses a deep-wide
neural network, called ShufflePointNet, to learn local depictions for point cloud data;
[54] applies a nueral network algorithm named Light Gated Recurrent Unit (Li-GRU) for
trajectory estimation. Machine learning’s capability to process large amounts of data
improves the accuracy and efficiency of motion planning.

2.5 Reinforcement Learning

The human nature of learning is realized by interacting with our environment, which
is also the basic idea of reinforcement learning(RL). The key point of reinforcement
learning is learning how to map situations to actions, so as to maximize a numerical
reward signal [55]. As a core component of artificial intelligent methods, RL techniques
are being widely applied for designing artificial agents to mimic human tasks in playing
games,objects/box grabbing and fetching, driving cars, and so on.

In the field of autonomous driving system, the domain of reinforcement learning has
become a powerful learning framework now capable of learning complex policies in
high dimensional environments, just as seen in an intersection scenario in dynamic
environments and varying vehicles dynamics. [56] applied deep reinforcement learning
algorithm(DRL) using a full-sized autonomous vehicle. DRL incorporates deep learning
into the solution, allowing the agent to make decisions from unstructured input without
manual engineering of the state space. The system is first trained in simulation and
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then in real time using on board computers, and succeeded in the real-world task of
following lanes. [57] encodes traffic rules as constraints of the optimization, building the
RL model based on constrained policy optimization to improve traffic rule compliance
of motion planners for autonomous vehicles. [58] extended reinforcement learning
with a safety layer using set-based prediction to guarantee a safe autonomous lane
changing. [59] builds a configurable reinforcement learning environment for motion
planning of autonomous vehicles called CommonRoad-RL[60]. This platform greatly
alleviates the work burden of the attempts to apply RL methods in motion planning
problems.

2.6 Development Environment

The project’s chosen environment is Conda in PyCharm. The first part of technical
realization is creating the scenarios, inserting road damages and outputting XML files
for reinforcement learning. The second part is setting up the reinforcement learning
environment. We will use the tools from CommonRoad, a collection of composable
benchmarks for motion planning on roads. It uses OpenAI-Gym environment as its rein-
forcement learning framework and builds an on-road autonomous driving environment.
Gym is an open-source Python library for developing and comparing reinforcement
learning algorithms by providing a standard API for communication between learning
algorithms and environments, and a standard set of environments.

The training process can be directly implemented in CommonRoad-RL. An alternative
choice is using Stable-baselines3. Stable-baselines3 is a collection of reliable imple-
mentations of reinforcement learning algorithms in PyTorch that are compatible with
OpenAI-Gym environment. Stable baselines3 offers a training framework with different
algorithm choices, the user only needs to build a custom environment specifying the
problem.
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Since the four types of motion planning algorithms mentioned in the previous chapter
can already solve most of the motion planning problems in automated vehicles, what
is the advantage of using a reinforcement learning algorithm in the road damage
avoidance use case? This chapter will describe the concepts of four representative
algorithms, A*, CL-RRT, Convex Optimization and Potential field, analyze their advan-
tages and disadvantages generally and specifically in the road damage avoidance use
case, and benchmark them with reinforcement learning.

3.1 A* Algorithm

A* Algorithm is a graph search based algorithm. It is the most popular search algorithm
for path finding and an extension of Dijkstra’s Algorithm and Greedy Best-First-Search.

The basic graph search algorithms are variants of Breadth-First-Search, which starts
from some arbitrary node of a graph and explores all of the neighbor nodes at the
present depth prior to moving on to the nodes at the next depth level. We assume
two-dimensional grids as the state space, where x and y indicate the horizontal and
vertical positions. A frontier queue is built to store the grids as new starts for further
exploration, and the reached grids will be stored in the reached dictionary to ensure
no repeated exploration. The Best-First-Search algorithm idea is demonstrated below.
The graph search algorithms vary the way the queue is used, switching from a first-
in-first-out queue to a priority queue. In other words, before the search of the current
depth is finished, Breadth-First-Search will always choose the grid of this depth to
explore, even though new neighbors of deeper depth are added to the queue, while
basic graph search algorithms will calculate the priority of the grids in the queue, and
choose the grid with highest priority to explore.

Dijkstra’s Algorithm works by visiting neighboring nodes in the graph starting with the
object’s starting point, checking if the visited one is the goal, and repeating the process
from the not-yet-explored grids, to make sure all possible paths included with a certain
number of iterations. It will expand outwards from the starting point until it reaches the
goal. Dijkstra’s Algorithm is guaranteed to find the shortest path from the starting point
to the goal, as long as none of the edges have a negative cost. In Fig. 3.1, the pink
square is the starting point, the blue square is the goal, and the teal areas show what
areas Dijkstra’s Algorithm scanned. The lightest teal areas are those farthest from the
starting point, and thus form the “frontier” of exploration.
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Algorithm 1 Best-First-Search algorithms

frontier = Queue()
frontier.put(start)
reached = dict()
reached[start] = True

while not frontier.empty() do
current = frontier.get()
for next in graph.neighbors(current) do
frontier.put(next)
reached[next] = True

end for
end while

Figure 3.1: Path planning through Dijkstra’s algorithm [61]
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Figure 3.2: Path planning through Best-First-Search algorithm [61]

In the graph search problem, there are some things that we consider common sense,
but the algorithms don’t understand, for example, it takes longer to move from one
state to another when the two states are getting farther apart; if the destination is to
the east, it is more likely to find the best path by going east than by going west. And
this information behind the relative relationship between the start and the goal can
be used as an estimation, called a heuristic. And this approach is used in Greedy
Best-First-Search algorithm. It estimates how far from the goal any grid is, and then
in exploration, instead of selecting the closest grid, it selects the grid closest to the
goal, which is represented with a low heuristic value. Greedy Best-First-Search is not
guaranteed to find the shortest path. However, it runs much quicker than Dijkstra’s
Algorithm because it uses the heuristic function to guide its way toward the goal very
quickly. Fig. 3.2 shows the result of the same demo used for testing Dijkstra’s Algorithm.
Yellow represents those nodes with a high heuristic value (high cost to get to the
goal) and black represents nodes with a low heuristic value (low cost to get to the
goal). Compared to the last Fig. 3.1, we can see that the scanned area of Greedy
Best-First-Search is much less than Dijkstra’s Algorithm, which means the computation
time is also much less.

However, both of these examples illustrate the simplest case. When we introduce a
concave obstacle in the grid map, Dijkstra’s Algorithm takes even more time but is
guaranteed to find the shortest path, as shown in Fig. 3.3; on the opposite, Greedy
Best-First-Search takes less time but the result is not optimal, as shown in Fig. 3.4.
The problem is that Greedy algorithms only consider the heuristic value, but ignores
the cost of the path so far.

To combine the best of both, A∗ was developed in 1968, combining heuristic ap-
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Figure 3.3: Dijkstra’s algorithm with a concave obstacle [61]

Figure 3.4: Best-first search algorithm with a concave obstacle [61]
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Figure 3.5: A* algorithm with a concave obstacle [61]

proaches like Greedy Best-First-Search, favoring grids that are close to the goal, and
formal approaches like Dijkstra’s Algorithm, favoring grids that are close to the start,
which guarantees a shortest path and also a shorter time [61]. In the standard termi-
nology used when talking about A∗, g(n) represents the exact cost of the path from
the starting point to any grid n, and h(n) represents the heuristic estimated cost from
grid n to the goal. In Fig. 3.5, grids with bigger h are further from the goal and more
yellow, while grids with bigger g are further from the starting point and present more
teal. A∗ balances the two as it moves from the starting point to the goal. The priority of
the queue is determined by the sum of these two parts. Each time through the main
loop, it examines the node n that has the lowest f(n) = g(n) + h(n).

From the lase examples we can see that the most important design aspect using A*
Algorithm is the determination of the cost function, which defines the weights of the
nodes. Even though g(n) is easier to get, the designing of h(n) significantly affects the
efficiency of the algorithm. In the road damage avoidance case, the heuristic function
should consider the different levels of severity of road damages and also different
shapes and distributions of road damages, along with the traffic rules, which all makes
the design of a general heuristic function a hard work.

3.2 Closed-loop rapidly-exploring random tree

Rapidly-exploring random tree is a sample-based algorithm. Imaging a two dimensional
environment with obstacles, the RRT algorithm starts by choosing a random point
within the environment, then creates a line between that new point and the start node
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and place a new point at a distance of delta from the start along that line, as long as it
does not result in any collisions with the obstacles. In each iteration of the algorithm
we follow the same procedure to add new points and expand the tree. Each time a
new point is created, an edge is created to the closest node within the tree. The tree
continues to expand into the environment following the pattern. Occasionally instead of
choosing a random point within the graph, the goal node is chosen in order to increase
the chances of finding it. Once the tree reaches the goal node, we can return the path
from start node to the goal node. The algorithm is shown in Fig. 3.6, the red nodes
represent obstacles.

Figure 3.6: Rapidly-exploring random tree [62]

With the constraints existing in automated driving, CL-RRT is developed to consider the
vehicles’ feasibility. Closed-loop rapidly-exploring random tree(CL-RRT) is an extension
of RRT that samples an input to a stable closed-loop system consisting of the vehicle
and a controller. In the algorithm, an input to the controller is sampled, followed by the
forward simulation using the vehicle model and the controller to compute the predicted
trajectory. The process is shown in Fig. 3.7. In the demonstration, the red straight lines
show reference paths as a result of rapidly-exploring random tree, as the paths in Fig.
3.6, while the green curves consider the constraints of vehicles based on the reference
paths, so they are more feasible and look less stiff. The idea of planning with closed-
loop prediction allows us to handle complex unstable dynamics and avoids the need
to find computationally hard steering procedures. But the result of the sample-based
algorithms depends on randomness, and when searching the entire solution space, it
may lead to high computational costs.
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Figure 3.7: CL-RRT [63]

3.3 Potential Field

A potential field is any physical field that obeys Laplace’s equation. Electrical, magnetic,
and gravitational fields are all potential fields. A potential field algorithm uses the
artificial potential field to regulate a robot in a certain space. The basic idea is to have
the robot attracted to the goal and repelled from the obstacles. An artificial potential
field can be generated using the potential field functions, creating attractive fields and
repulsive fields, and the robot, which can be assumed as a ball, will simulate from the
highest potential to the lowest potential as shown in Fig. 3.8. In the demonstration, the
potential of each point is represented by colors and height. Red and high points have
higher potential and construct the repulsive fields, while blue and low points have lower
potential and construct the attractive fields.

The potential of each point is sum of the attraction force and the repulsion force at the
point. The attraction force comes from the goal node and is inversely proportional to
the distance from goal node. The repulsive forces come from boundaries and obstacles
and keep the robot away from them.

Potential field algorithm is traditionally used in path planning and obstacles detection.
It’s quick and straight forward. A challenge for potential field is the local minima trap
issue as shown in Fig. 3.9, which may lead to a local optimal result but not a global
one. With the complexity of the environment rising, the potential field would be more
complicated and reaction forces may cancel each other, which may creates more local
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Figure 3.8: Potential field with obstacles [64]

Figure 3.9: Local minima trap [64]

minima trap. Moreover in the scenario of autonomous driving, the vehicle feasibility is
hard to be taken into consideration.

3.4 Convex Optimization

Convex optimization is a subfield of mathematical optimization that studies the problem
of minimizing convex functions over convex sets. A function is called convex if the line
segment connecting any two distinct points on the graph of the function lies above the
graph between the two points. A set is convex, if given any two points in the set, the
set contains the whole line segment connecting these two points. A function is convex
if the set of points on or above the graph of the function is convex [65]. The abstract
nature of the method enables the algorithm widely used in many problems. The key
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idea of convex optimization is to formulate the problem into a convex optimization
problem, as long as the problem is correctly built, the computation of the result will be
simple. The standard form of convex optimization is shown below.

minimize f(x)

subject to gi(x) ≤ 0, i = 1, · · · ,m
hi(x) = 0, i = 1, · · · , p

x is the optimization variable; The objective function f is a convex function; The
inequality constraint functions gi are convex functions; The equality constraint functions
hi are affine transformations, that is, of the form: hi (x)= a1 · x- bi ,where ai is a vector
and bi is a scalar.

In the field of motion planning, convex optimization is usually used to smooth the
trajectory, with the vehicle feasibility taken into account. In [66], given a reference
trajectory, a convex set could be built as a collision-free elastic band, in which new
waypoints can be set to create a smoother trajectory. The constraints for the placement
of the new waypoints rely on a number of approximations to ensure convexity of the
optimization problem. An application of the convex optimization in motion planning is
shown in Fig. 3.10. The dashed line represents the reference path that goes through
the map with obstacles without collision. It’s stiff and not feasible for vehicles. The
solid line is the smooth result of the convex optimization considering the kinematic
constraints based on the reference path.

Figure 3.10: Using convex optimization for trajectory smoothing [66]
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3.5 Benchmark

After having a theoretical understanding of the algorithms, the benchmarking focusing
on our use case can be implemented. Five benchmarks are listed: completeness of
the solution, optimality, kinematic feasibility, and computation speed.

Completness of the solution

The completeness of the solution depends on if the algorithm can solve the problem
independently. Convex optimization and potential field are usually used based on
a reference path. In our use case of road damage avoidance, the motion planning
problem is hard to be written into a convex optimization problem or a potential field
form. Therefore, if we need to use these two methods, another motion planner needs
to calculate a solution as a reference first. As for A* search and reinforcement learning,
the problem can be easily formulated. The different severity levels can be manifested in
the heuristic function in A* search and reward function in reinforcement learning. In the
case of CL-RRT, it is also used to optimize the vehicle dynamics in motion planning,
but it also can find the trajectory in our scenario without a reference. While the road
damage severity may be neglected.

Optimality

As convex optimization and potential field cannot find the solution independently, the
optimality of the solution is locally optimal depending on the optimality of the reference
path. As for the other three methods, global optimality can be ensured.

Kinematic feasibility

In A* search, the agent’s actions can be defined under the constraints of vehicle
kinematic feasibility. CL-RRT is an extension of the original RRT algorithm, but takes
kinematic feasibility into account. It can be partially satisfied in convex optimization
depending on which parts of the kinematics can be formulated into a convex problem.
The potential field can hardly reach the benchmark. By introducing the vehicle model
into the reinforcement learning environment, the kinematic feasibility can be satisfied.

Computation speed

In A* search method, each action in each frontier state needs to be explored and the
cost and heuristic are meanwhile calculated. In our use case, the actions including
acceleration and steering, the motion primitives are huge. In addition, the road damage
severity level would complex the heuristic function. Therefore the computation speed
of A* search in our use case would be very slow. CL-RRT benefits from sampling, the
speed would be faster than A*, but considering the kinematic feasibility still slow down
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Table 3.1: Benchmark of Motion Planning Algorithm.
Algorithm Completeness Optimality Kinematic

feasibility
Computation
speed

A* Search Solution com-
plete

Global opti-
mality

Yes Very Slow

CL-RRT Solution com-
plete

Global Op-
timality

Yes Slow, but it de-
pends on ran-
domness.

Potential Field No Local Opti-
mality

No Quick

Convex Opti-
mization

No Local Opti-
mality

Partially Quick, but a con-
vex corridor must
be provided by a
global planner

RL Solution com-
plete

Global opti-
mality

Yes Quick

the computing. For convex optimization and potential field, as long as the problem
is successfully formulated in the correct form, the computation would be fast. As for
reinforcement learning, it takes time to train, while once the hypermeters are optimized,
the model can be used in new scenarios and the computation speed would be fast.

To summarize the algorithms mentioned above and compare them with reinforcement
learning approach in the road damage avoidance problem, the benchmark is shown in
Table 3.1.

From the analysis above, it can be seen that due to the increased complexity of
the obstacles(road damage) and the limitation of the vehicle’s kinematic feasibility,
reinforcement learning has advantages over conventional motion planning algorithms
in our use case.
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In Chapter 2, the basic idea of Reinforcement Learning is briefly mentioned, i.e.,
learning how to map situations to actions, and how to maximize a numerical reward
signal, and introduced its applications and relevant research. In this chapter, the
fundamental elements of reinforcement learning, the mathematical essence, and the
different algorithms will be described in detail.

4.1 Fundamental Principles

As a part of artificial intelligent learning methods, reinforcement learning focuses
much more on goal-directed learning from interaction comparing with other learning
methods. The intrinsic of reinforcement learning is learning from the interaction with
the environment. The learner isn’t been told which action to take, but instead must
discover which actions yield the most reward by trying them. Furthermore, the action
would not only lead to effects on the immediate reward but also all subsequent rewards.
These two characteristics—trial-and-error search and delayed reward—are the two
most important distinguishing features of reinforcement learning [55].

The major difference between Reinforcement Learning and Supervised Learning is that
supervised learning relies on a labeled training set and then predicts the extrapolation
of an unlabeled result, usually for classification problems, whereas interaction with the
environment is difficult to actually sample and label, and the learner must learn from its
own experience. RL and unsupervised learning have in common that they do not rely
on labeled examples, but unsupervised learning focuses on finding hidden structure,
while RL focuses on maximizing a reward signal. Therefore, we consider reinforcement
learning to be a third machine learning paradigm, alongside supervised learning and
unsupervised learning.

Components of RL system

The learner is also called the agent in a reinforcement learning system. The agent and
the environment are the two main roles in a RL problem, and the agent must be able
to sense the state of its environment to some extent and must be able to take actions
that affect the state. The agent also must have a goal or goals relating to the state of
the environment.
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Beyond the agent and the environment, one can identify four main subelements of
a reinforcement learning system: a policy, a reward signal, a value function, and,
optionally, a model of the environment.

A policy π defines the learning agent’s way of behaving at a given time. Roughly
speaking, a policy π : S− > A is a mapping from perceived states to actions the agent
needs to take in those states. It’s an imitation of the human being’s stimulus-response
rules or associations. In some cases the policy may be a simple function or lookup
table, whereas in others it may involve extensive computation such as a search process.
The policy is the core of a reinforcement learning agent in the sense that it alone is
sufficient to determine behavior. In general, policies can be deterministic:

π(s) = a (4.1)

or stochastic, specifying probabilities for each action:

π(a|s) = Pr(at = a|st = s) (4.2)

A reward signal defines the goal of a reinforcement learning problem. At each time step,
the environment sends to the reinforcement learning agent a single number called the
reward. The reward signal of the instant time step t can be marked as rt. The agent’s
sole objective is to maximize the total reward it receives over the long run. The reward
signal thus defines the good and bad events for the agent. In a biological system, we
might think of rewards as analogous to the experiences of pleasure or pain. They are
the immediate and defining features of the problem faced by the agent. The reward
signal is the primary basis for altering the policy; if an action selected by the policy is
followed by low reward, then the policy may be changed to select some other action in
that situation in the future. In general, reward signals may be stochastic functions of
the state of the environment and the actions taken.

Differing from a reward signal indicating a good event in an immediate sense, a value
function specifies what is good in the long run. The value of a state is the total amount
of reward an agent can expect to accumulate over the future, starting from that state.
The value function needs to consider not only the immediate reward, but also the
states that are likely to follow and the rewards available in those states. If a reward for
a state is low, but the following states yield high rewards, the value of the state might
still be high. It shows the long-term desirability of the state to the goal. Values are like
a more refined and farsighted judgment in the long term of the situation humans are
in, which means both immediate reward and future expectation should be taken into

30



4 Reinforcement Learning Concept

account. A value function V π can be constructed as an expected discounted sum of
future rewards under a particular policy π:

V π(st = s) = Eπ[rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · |st = s] (4.3)

Discount factor γ weighs immediate and future rewards. The value function can be
used to quantify goodness/badness of states and actions, and decide how to act by
comparing policies.

Even though that the value is an accumulation of rewards, it is still the primary indi-
cator of making and evaluating decisions. Action choices are made based on value
judgments. The process of reinforcement learning is actually seeking actions that bring
about states of highest value. Unfortunately, it is much harder to determine values
than to determine rewards. Rewards are basically given directly by the environment,
but values must be estimated and re-estimated from the sequences of observations
an agent makes over its entire lifetime. In fact, the key point to solve a reinforcement
learning problem is to efficiently estimate values.

A model of the environment mimics the behaviour of the environment, represents
how the world changes in response to agent’s action. For example, given a state
and action, the model might predict the resultant next state and next reward. The
transition/dynamics model predicts the probability of the possible next agent state:

p(st+1 = s′|st = s, at = a) (4.4)

and reward model predicts immediate reward, where E means the Expectation of all
possible rewards:

r(st = s, at = a) = E[rt|st = s, at = a] (4.5)

Models are used for planning, by which we decide a course of actions considering
possible future situations before the agent actually experience them. Methods for
solving reinforcement learning problems that use models and planning are called
model-based methods, as opposed to simpler model-free methods that are explicitly
trial-and-error learners.

As model-based and model-free methods distinguish different reinforcement agents,
the existence or absence of value function and policy divided RL agents into more
types, as shown in Fig.4.1, in which actor critic means, given a state, the value and the
policy will be explicit.
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Figure 4.1: RL Agent classification [67]

Exploration and Exploitation

One of the challenges in reinforcement learning is the trade-off between exploration
and exploitation. Since the agent learns from interaction with environment, it must take
actions and then get to know the rewards. To get more rewards, the agent always faces
to a dilemma: exploit what it has experienced, or explore other possibility in order to
make better action selections in the future. None of them could be applied alone to
succeed at the task. The agent must try a variety of actions and progressively favor
those that appear to be the best.

4.2 Markov Decision Process

The process of reinforcement learning can be described as the agent learning to
make good decisions. There are two types of sequential decision processes: Ban-
dits and Markov Decision Process (MDP)/Partially observable Markov decision pro-
cess(POMDP) [67]. In Bandits, actions have no influence on next observation/state
and no delayed rewards, while in MDP/POMDP, actions will influence future observa-
tion/state, which corresponds to the feature of reinforcement learning.
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Figure 4.2: Interaction between environment and agent [55]

Markov decision process (MDP) is a discrete-time stochastic control process, an exten-
sion of the Markov chains, a stochastic model developed by the Russian mathematician
Andrey Markov, describing a sequence of possible events in which the probability of
each event depends only on the state attained in the previous event.

A framework for reinforcement learning problem can be summarized as a continual
interaction between the agent and the environment, where the agent selects actions
and the environment responds to these actions, presents new situations to the agent
and gives rewards. The framework is shown in Fig. 4.2.

In detail, the process can be described as follows: the agent and the environment
interact along discrete time steps, t = 0, 1, 2, 3, ....At each time step t, the agent
receives a representation of the states of the environment St, based on the states an
action or actions At are selected. One time step later as the consequence of this action,
the agent receives a reward Rt+1 , and at the same time the new states Rt+1. The
whole process is based on a premise that the process is consistent with the Markov
decision process.

As mentioned in Chapter 3, graph search methods are commonly used in motion
planning also as a goal-directed approach. Then what are the advantages of MDP
compared to search methods? We can compare the frameworks of both and better
understand MDP. The major difference between search problems and MDP is that,
search algorithms do not consider the uncertainty in the real world, which means, given
a state and an action, the succeed state is deterministic. The uncertainty is taken into
account in MDP as the transition probabilities T (s, a, s′), specifying the probability of
ending up in state s′ if taken action a in state s. For each state s and action a:

∑
s′∈States

T (s, a, s′) = 1 (4.6)

Along with the transition probabilities T (s, a, s′), reward(s, a, s′) is introduced in MDP
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for the transition(s, a, s′) instead of a cost(s, a) in search problems and the discount
factor is also chosen for future rewards and calculating values. The discount factor
shows how much we care about future. When the discount factor equals 0, MDP
becomes a greedy approach.

The result for search problems is a path, in other words, a sequence of actions. And
for MDP, the result is a policy, a mapping from each state to an action. The different
feature of solutions enables MDP to deal with dynamic environment. The criteria to
estimate the policy is utility, the discounted sum of the rewards on the path. But utility
is a random quantity, therefore, value is introduced to represent the expected utility.
The relationship between a state-action-value-function Qπ(s, a), or so called Q-Value
and value is described below:

Vπ(s) =

{
0 if lsEnd(s)

Qπ(s, π(s)) Otherwise
(4.7)

Qπ(s, a) =
n∑

i=1

T (s, a, s′)[Reward(s, a, s′) + γVπ(s
′)] (4.8)

The key idea to get an optimal policy is the iterative algorithm. The states start with
arbitrary policy values and repeatedly apply recurrences to converge to true values.
The policy evaluation algorithm is shown below:

Algorithm 2 policy evaluation
for all state s do
V

(0)
π (s)← 0

end for
for t in 1, · · · , tPE do

for each s do
V

(t)
π (s)←

∑
s′ T (s, π(s), s

′)[Reward(s, π(s), s′) + γV t−1
π (s′)]

end for
end for

Reinforcement learning is based on MDP, but with unknown transition probabilities and
unknown reward function.
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4.3 Methods and Algorithms

There are two types of reinforcement learning: Tabular solution methods and approxi-
mate solution methods. Tabular solution methods describe almost all the core ideas of
reinforcement learning algorithms in their simplest form: that in which the state and
action space are small enough for the approximate value functions to be represented
as arrays, or tables. In this case, the methods can often find exact solutions- the opti-
mal value function and the optimal policy. Approximate solution methods are usually
applied in larger problems, and can only find approximated solutions. It can be seen as
a combination of reinforcement learning and an existing generalization method(function
approximation) [55]. Supervised learning algorithms are applicable for approximating
functions within reinforcement learning, as shown in Deep Reinforcement learning
as example. Since approximate solution methods are extension of tabular solution,
this section will start with the core methods in reinforcement learning and then ex-
plain some representative algorithms. According to the classification of reinforcement
learning agent in Fig.4.1, this section will start with model-based and model-free meth-
ods, then introduce value-based, policy-based, and actor-critic methods. Finally, deep
reinforcement learning is discussed as an example only for approximate solution.

4.3.1 Model-based and Model-free methods

If the method is based on model or not distinguishes the reinforcement learning
methods into two classifications. This subsection will discuss a model-based method-
dynamic programming, and two model-free methods-Monte-Carlo method and temporal-
difference method.

Dynamic Programming

Dynamic Programming (DP) refers to a collection of algorithms that can be used
to compute optimal policies given a perfect model of the environment as a Markov
decision process(MDP). Other reinforcement learning algorithms can be viewed as
attempts to achieve the same effect as DP, only with less computation and without
assuming a perfect model of the environment [55].

The key idea of DP, and of Reinforcement Learning generally, is the use of value
function to organize and structure the search for good policies. A complete dynamic
programming process consists of policy evaluation, policy improvement and policy
iteration.
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Policy evaluation is the process to compute the state-value function Vπ for an arbitrary
policy π. The initial approximation, V0, is chosen arbitrarily, and each successive
approximation is obtained by using the Bellman equation for Vπ as an update rule[55]:

vk+1(s)
.
= Eπ[Rt+1 + γvk(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)] (4.9)

In the equation, k represents the iteration index of the value function. The calculated
new value function is iterated again until it converges. Converging means that the
difference between the new value and the last value is below a small threshold.

Policy evaluation is used for policy improvement, which means to find a better policy.
Assume there are two policies π and π′, when in every state s,

qπ(s, π
′(s)) ≥ vπ(s) (4.10)

then,

vπ′(s) ≥ vπ(s) (4.11)

In this situation, the new policy π′ is as good as, or even better than the old policy
π. The policy evaluation and policy improvement will repeat as the process of policy
iteration, until the final policy is fund. The policy iteration process is shown below:

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ · I−→ π∗

E−→ v∗ (4.12)

where E−→ represents policy evaluation, and I−→ represents policy improvement.

Monte-Carlo Method

DP is based on a perfect MDP model, which is not realistic in real-world reinforcement
learning problems, because it’s impossible to obtain the whole environment as a model.
In this situation, Monte-Carlo method, which only learns from experience-sample
sequences of states, actions, and rewards from actual or simulated interaction with an
environment, is practical way.

Monte Carlo methods for RL are based on averaging sample returns. So to ensure that
the well-defined returns are available, we assume experience is divided into episodes,
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and that all episodes eventually terminate no matter what actions are selected. For a
given policy π, within an episode a state s appears one or more times. The appearance
of the state is called a visit. The value function Vπ(s) is tuned by averaging the returns
Gt of all visits from the state s. When only the first visit from the s within an episode
is used, the method is called first-visit-MC. If all visits from s are used, the method is
then called every-visit-MC [55].

Due to the environment model is not complete, we use State-Action-Value-Function
qpi(s, a) instead of State-Value-Function Vπ(s) in policy evaluation and policy improve-
ment [55]:

π0
E−→ qπ0

I−→ π1
E−→ qπ1

I−→ π2
E−→ · I−→ π∗

E−→ q∗ (4.13)

The evaluation process is identical with it in DP, the policy improvement in MC will use
a greedy approach in Q-value, which means in each state s, the action a with highest
Q-value will be chosen:

π(s)
.
= argmax

a
q(s, a) (4.14)

In the MC method, policy evaluation and policy improvement are performed only at the
end of an episode. Accordingly, the method is an episode-by-episode method, not a
step-by-step method. An every-visit MC can be represented by the following equation:

V (St)← V (St) + α[Gt − V (St)] (4.15)

St : non-terminal states under policy π
V : Estimate of Vπ
Gt the averaged return at time t
α : Constant for step sizes

Monte-Carlo methods can also be roughly divided into model-based MC and model-
free MC. Model-based MC can estimate the transition function T and reward R in the
frame of the MDP, while model-free MC tries to estimate Qopt directly, as shown above.

Temporal-Difference Learning

As DP and MC methods both have their own advantages and disadvantages, the
temporal-difference learning can combine the pros of both. TD learns the policy from
experience, like in MC, but like in DP, it doesn’t need to wait till the end of an episode.
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Figure 4.3: Relationship between DP,MC and TD methods

This is realized by performing the so-called bootstrap method. That is, compared to Eq.
(4.15), the TD method only has to wait until time t+ 1 to update the estimate V (St):

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (4.16)

Where the components in square brackets Rt+1 + γV (St+1)− V (St) is called TD-Error
δt. Comparing with Eq. (4.15), it can be seen that the update target of the value
function is changed from Gt to Rt+1 + γV (St+1). I.e., no longer waiting until the end
of an episode for an update. TD-Error denotes the extent to which the estimate V (St

deviates from the expected value Rt+1 + γV (St+1).

Since the procedure considers only the first future time point, it is also called TD (0). If
the procedure considers n time points (n>1), the procedure is called n-step TD, Eq.
(4.16) is then extended accordingly:

Vt+n(St)
.
= Vt+n−1(St) + α[Gt:t+n − Vt+n−1(St)], 0 ≤ t < T (4.17)

The Fig. 4.3 shows the relationship between DP, MC and TP.

4.3.2 Value-based methods

Even though the ultimate goal of reinforcement learning is to find the optimal policy, the
value function or Q-value function play an important role. As the methods mentioned
above, the key point of the problem is to find the optimal value function, and the
policy derived from the value function. These type of methods are called value-based
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methods, which can also be divided into two sub-types: on-policy methods and off-
policy methods.

In reinforcement learning, a policy with randomness is needed to explore the environ-
ment, and collect samples. Randomness is needed because until the optimal policy
π∗ is found, the current policy π is still not the best. The action specified by it is also
not optimal. Therefore, the algorithm must also try with the actions that are not optimal
from the point of view of current policy. This is called exploration. A deterministic policy,
as represented by Eq. (4.18), is a "greedy" method on Q-value. A stochastic policy can
be realized by adding probability parameter ϵ:

Vϵ(s)
.
=

{
argmaxa q(s, a), with probability 1-ϵ

random action, with probabilityϵ
(4.18)

Off-policy methods use two policies, the behavior policy b and the target policy π,
to separate sample collection from actual learning process. The behavior policy is
specifically responsible for collecting data, with some randomness there is always
some probability of selecting the potentially optimal action. The target policy improves
steadily with the help of the samples collected by the behavior policy and the policy
improvement strategy, eventually becoming the optimal policy.

A representative off-policy method is Q-Learning, its algorithm is shown below:

Algorithm 3 Q-Learning

Initialize Q(s, a) arbitrarily
for each episode do

Initialize s
for each step of episode do

Choose a from s using policy derived from Q (e.g., ϵ-greedy)
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α[r + γmaxαQ(s
′, a′)−Q(s, a)]

s← s′

end for
end for

In comparison with off-policy procedures, there is only one policy in the on-policy
procedure, this policy is used as behavior and target policy at the same time. SARSA
is a successful example of on-policy methods. The name SARSA comes from the
elements considered in one iteration, s, a, r, s′, a′. The algorithm is shown below:
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Algorithm 4 SARSA

Initialize Q(s, a) arbitrarily
for each episode do

Initialize s
Choose a from s using policy derived from Q
for each step of episode do

Take action a, observe r, s′

Choose a′ from s′ using policy derived from Q
Q(s, a)← Q(s, a) + α[r + γmaxαQ(s

′, a′)−Q(s, a)]
s← s′; a← a′

end for
end for

4.3.3 Policy-based methods

Beside the value-based methods, where the policy is derived from Q-value, there are
also policy-based methods, where the agent learn a parameterized policy directly
through the interaction with the environment. In policy-based methods, the parameters
θ of policy are introduced, along with a value-function, to be used to learn θ. The
probability that action a is performed at time t under state s with parameter θ can be
described by the following equation:

π(a|s, θ) = Pr(at = a|st = s, θt = θ) (4.19)

To learn the parameters θ, a scalar performance measure J(θ) is used. The goal of a
policy-based method is to maximize the performance measure. This can be achieved
by different approaches, for example, the policy gradient (PG) method, where the
gradient ascent is used to adjust the J(θ):

θt+1 = θt + α ̂∇J(θt) (4.20)

̂∇J(θt): a stochastic estimate whose expectation approximates the gradient
of the performance measure with respect to its argument θt

α: Learning rate

The definition of J(θ) is different, depending on whether it is episodic task or continuous
task. For episodic task, J(θ) is defined like this:

J(θ)
.
= vπθ

(s0) (4.21)
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Then the policy gradient theorem is like:

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s, θ) (4.22)

µ: On-Policy distribution
π: Policy with parameter θ
∝: proportional

It can be seen that the gradient of J(θ) depends on partial derivatives with respect
to the components θ. On-policy distribution µ indicates the occurrence frequency of
a state. If the agent follows policy π, this distribution can be replaced by an expected
value:

∇J(θ) = Eπ[
∑
a

qπ(s, a)∇π(a|st, θ)] (4.23)

In the equation above, the part π(a|st, θ) can be further reformed:

∇J(θ) = Eπ[(
∑
a

π(a|St, θ)qπ(s, a)
∇π(a|St, θ)

π(a|St, θ)
]

= Eπ[(
∑
a

qπ(st, at)
∇π(At|St, θ)

π(At|St, θ)
]

= Eπ[Gt
∇π(a|St, θ)

π(a|St, θ)
]

(4.24)

Then we replace the ∇J(θ) in Eq. 4.20 with Eq. 4.24:

θt+1 = θt + αGt
∇π(At|St, θ)

π(At|St, θ)
(4.25)

The equation shows, that each update of θt is proportional to the Gt and the vector
∇π(At|St,θ)
π(At|St,θ)

, which is the ratio between the gradients of the probability of selecting
actions At and the probability itself. The ratio points out a direction for the parameters’
update. The step size of the update θt+1 − θtis proportional to Gt, meaning that one
can get multiple rewards in this direction. Step size is inversely proportional to the
probability π(At|St, θ) to avoid repeating non-optimal actions. This algorithm is called
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REINFORCE. It is a Monte-Carlo method because the reward Gt is only available after
the end of an episode.

An obvious drawback of the REINFORCE algorithm is that the variety of rewards sum
Gt is too big. If we assume that there are 2 states and 6 actions in the environment,
then there will be 6 rewards corresponding 6 state-action pairs. That means in each
time step there will be 6 possibilities of reward. When the number of time steps grows,
the range of the possibilities will further grow, which makes the calculation of Gt very
slow.

There are two solutions to avoid a huge variety. The first one uses the baseline b(s) as
the basis of value function. The Eq. 4.22 then can be reformed into:

∇J(θ) ∝
∑
s

µ(s)
∑
a

(qπ(s, a)− b(s))∇π(a|s, θ) (4.26)

If we choose the average value of the rewards in one state, then the average value of
(q − b) will be zero, then the variety will be reduced.

The second solution to avoid the accumulation of the rewards is to consider the reward
of only the next step or the rewards of a few next steps. This method uses the concept
of TD, and it’s called Actor-Critic(AC).

4.3.4 Actor-Critic methods

The key idea as we mentioned in section 4.1 is the combination learning of policy and
state-value-function. Although the REINFORCE algorithm with Baseline learns the
policy and at the same time a state-value-function b(s), the value function isn’t really
engaged in the Bootstrap process, so it’s not an actor-critic method.

The actor-critic method can use value-function with Bootstrap(Critic) and TD methods,
then the update of the parameters can be reformed as below:

θt+1 = θt + α(Gt:t+1 − v̂(St, w))
∇π(At|St, θ)

π(At|St, θ)

= θt + α(Rt+1 + γv̂(St+1, w))
∇π(At|St, θ)

π(At|St, θ)

= θt + αδt
∇π(At|St, θ)

π(At|St, θ)

(4.27)
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where a ’critic’ learns the value-function to lead the ’actor’. The ’actor’ improves the
policy. Depending on whether the behavior and target policies are the same or different,
the actor-critic procedure can be on- or off-policy.

4.3.5 Deep Reinforcement Learning

Deep reinforcement learning is a representative approximate solution for bigger prob-
lems. It combines the deep neural network to approximate the environment. As we
explained above, a reinforcement learning method can be used with value-based or
policy based principles. The successful DRL approaches with Value-based principle
are e.g. Deep Q Network DQN and Double Q Network DDQN, with Policy-based
principle are e.g. Proximal Policy Optimization Algorithms PPO and Trust Region Policy
Optimization TRPO. The approaches that use both ideas (Actor-Critic) are e.g. Deep
Deterministic Policy Gradient DDPG and Soft Actor-Critic SAC.
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5 Technical realization

5.1 Scenario Design

Although the environmental factors are more complex in urban streets, the driving
speed is lower and the driver has enough time to flexibility deal with road damage.
However, on a highway the driver does not have enough time to react in a safe and
reasonable manner. Therefore, this work regards the application scenario on the
highway.

Considering the possibility that the self-driving vehicle is driving in the rightmost lane,
and it cannot avoid road damage without lane changing, a second lane adjacent to the
rightmost lane is designed in the scenario too. Also, to make the model more general,
some curvature is added to the lanes.

By checking the Austrian highway road standards, we acknowledged that the rightmost
lane is usually 3.75m wide. In a two-lane highway, the other lane is also 3.75m wide;
in a three-lane freeway, the other two lanes are both 3.5m wide. Since we introduce
the second lane only to satisfy the possibility of lane change, and do not consider
the existence of the third lane, we put both lanes in the scenario set to 3.75m wide.
Meanwhile, a monitoring distance ahead of the vehicle is set to 100m, allowing the
vehicle to make speed and direction adjustments. Since this thesis is to show the
superiority of reinforcement learning compared with conventional algorithms in complex
problems, we increase the number of various types of road damages to more than 6,
distributed over a 50m stretch of road. A final section of about 25m is reserved for cars
to return to the middle of the rightmost lane to drive. Therefore we set the total length
of the test track from the starting point to the destination at about 175m.

The maximum speed limitation Austrian motorway is 130km/h [68], and to make sure
the deceleration will not disturb the traffic, set the minimum speed to 70km/h.

CommonRoad has an existing scenario dataset, comprising scenarios from different
countries and with different static and dynamic obstacles for researchers to test their
models. However, we need to generate scenarios for training purposes, and the road
damages explored in this thesis require consideration of different severity levels, which
are not considered in CommonRoad, so we cannot use the dateset directly. Fortunately,
they also provide a graphical user interface (GUI) in a toolbox called CommonRoad
Scenario Designer[69] that can be used to generate simple scenarios into XML files.
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Figure 5.1: CommonRoad Scenario Designer GUI [69]

Figure 5.2: Two-lane highway scenario

The CommonRoad Scenario Designer can convert maps from the Lanelet/Lanelet2,
OpenDRIVE, OpenStreetMap (OSM), and SUMO formats to the CommonRoad format.
Additionally, they provide conversions from the CommonRoad map format to the SUMO
and Lanelet format. The GUI is shown in Fig.5.1. Through this, we can simply add
lanes, set their length, width and curve radius. Obstacles, and traffic signs can also
be added on the interface, but road damage is not considered in it. We will add road
damage in the scenario through coding in the next section. The scenario we designed
is shown in Fig.5.2.

Planning Problem

A planning problem in CommonRoad is defined by a planning problem ID, an initial
state and a goal region. Different planning problems can be inserted and respectively
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Figure 5.3: Planning problem

called by different planning problem IDs. The scenario generated in Fig.5.2 can be
seen as the basic environment, based on which different road damage distributions
can be generated to create different scenarios. To control the variables, in all the
scenarios the vehicle shares the same start point and destination, therefore, only one
planning problem needs to be defined in the basic environment and will be called in all
scenarios.

As we can see from the generated scenario in Fig.5.2, the road has curvature, but
its coordinate system is still a right angle coordinate system, which makes it difficult
to locate the relative coordinates of the vehicle on the road, so we need to create a
curvilinear coordinate system along the road. CommonRoad_io API provides tools to
help with the coordinates conversion.

In the planning problem, the vehicle will start from the middle of the rightmost lane
from the beginning of the road with the coordinate [0,0] and reaches to the middle
point of the rightmost lane at the end of the road [175,0]. In the initial state, several
parameters need to be defined, including position in a global coordinate system,
orientation, velocity in the longitudinal direction, acceleration, yaw rate and slip angle.
The vehicle has to obey the speed limitation on highway, so the initial velocity is set as
100km/h, and other parameters to zero value. The goal region is set to be a rectangular
area, with a width of 3.0m and a length of 5.0m, whose right side located at the end of
the road. The position of the goal region center is calculated through the curve radius
and curve angle we used in the scenario designer. During the demonstration API from
CommonRoad, the planning problem is shown in Fig.5.3.

Curvilinear Coordinate System

To set up a curvilinear coordinate system along the road, we need a reference path
along the middle line of the rightmost lane. In this simple case, we can directly use
the route planner API in CommonRoad. It is competent to generate a route from the
starting point to the destination along the lanes. Another planning problem needs to be
defined to provide this information. The generated planning problem can be slightly
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Figure 5.4: Reference path from route planner

modified and used here. By modifying the goal region to a 0.1m*0.1m square centering
on the end of the middle line, the route can be accurately set to the middle line of the
rightmost lane. Calling the route planner to solve the planning problem, the reference
path is generated and shown in Fig.5.4

Based on the trajectory, the curvilinear coordinate system can be built. Using the
Commonroad Drivability Checker API we can convert the coordinates from the right
angle coordinate system to the curvilinear coordinate system and vice versa. And this
function will be frequently used in road damage generation to ensure their position
whthin the lanes.

5.2 Road Damage Generation

There are different classification methods for road damage types and severity levels. To
better integrate into the project ESRIUM, we use the classification from the project, in
which 17 types of road damages are defined with different shapes, sizes and severity
levels. The 17th road damage type is rut, which usually occupies a wide range but
with a minor severity, so this road damage type will be ruled out from the generation
process. The 16 types of road damage are listed in Table 5.1.

To generalize the road damage shapes, convex polygons are used to represent these
road damages, and using different distributions of vertices to distinguish them from
each other. These polygons can be overlapped and form non-convex shapes.

First of all, a road damage type function is defined, where 16 road damage types are
numbered, so that they can be easily called later. There is no existing road damage
class in CommonRoad, for better compatibility with CommonRoad, the road damage is
defined as Static Obstacle class, and its information including obstacle ID, damage
type, position and severity level will be stored in a YAML file through generating. In
future training, the severity information can be accessed by calling the obstacle ID.
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Table 5.1: Road damage classification in ESRIUM [70]
Damage ID Damage Type Severity

class
01 Lack of mortar in asphalt 1
02 Grain breakout in asphalt 1
03 Chip breakout in asphalt 2
04 Pothole in asphalt 2
05 Mending area in asphalt 1
06 Binder emission in asphalt 1
07 Grain breakout in concrete 2
08 Chip breakout in concrete 2
09 Detachment in concrete 2
10 Edge defects in concrete 2
11 Single cracks < 2 mm and mended cracks in

asphalt
1

Open cracks >2 mm and <10 mm 2
Open cracks >10 mm or parallel cracks 3

12 Seam cracks <2 mm and mended cracks in
asphalt

1

Seam cracks >2 mm 2
13 Unmended network cracks in asphalt 2

Unmended network cracks with polygon break-
outs

3

14 Unmended cracks and corner defects in con-
crete

3

15 Mending area in concrete, mended by asphalt 2
16 Damaged mending area in concrete, mended

by concrete
2

49



5 Technical realization

The Static Obstacle can be defined as Polygon by providing vertices. So the next step
is to configure the polygons. We will use the convex polygon functions to construct
the convex polygons, where multiple vertices are given and the outermost vertices
are connected together to form a convex polygon. We want to sample the vertices
according to Gaussian distribution, but different types of road damage have different
sizes. So another function is built to specify the standard deviation for different types
according to the ESRIUM road damage description in Table 5.1 and to control their
size and shape. The larger the standard deviation in a given direction is, the wider the
distribution of vertices in this direction becomes. Since only the outermost points will
be taken as the vertices, the final shape will also have a greater length in this direction.
For example, if the road damage is a crack, the standard deviation in the x direction can
be set much greater than it in the y direction. And for a hole, the greater the standard
deviation is, the bigger the size of the hole becomes. According to the ESRIUM road
damage classification, under the main types, there are subtypes with different sizes
and severity. So in the function, we use random sampling with a fixed proportion for the
subtypes in each main type. Then according to the subtype information, we set different
standard deviations for x and y directions and randomly sample the severity level. The
position of these polygons will be defined by the random sampling of the mean of
the Gaussian distribution in the road stretch of [100,y]-[150,y] in the rightmost lane.
During this process, each time when we call a road damage type, the information of its
position, standard deviation in x and y directions and severity level will be returned.

Then the points from Gaussian distribution will be input into the convex polygon function
to get the real vertices. Then we can build the road damage generation function. This
function allows you to create polygon road damage based on the road damage type,
and add it to the original scenario.

Since we need to create multiple road damages in a scenario, another function is
built. Giving the function the number of road damages, it will randomly choose a given
number of the road damages types, then calls the road damage generation function,
and finally visualize road damages with different severity in different colors, as well
as saving the scenario along with the picture of the scenario in different folders. The
pictures are saved for visual checking, whether the scenario is successfully generated
and whether the solution is reasonable. A scenario with 6 road damages with different
severity levels are shown in Fig.5.5. The details are extracted and shown in Fig.5.6
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Figure 5.5: Scenario with road damages

Figure 5.6: Road damage with different severity levels

5.3 Data preprocessing

To train the reinforcement learning, a dataset with multiple scenarios is required. This
can be realized by another function repeating the road damage generation process to
build the dataset. In this work, 200 scenarios are built and saved in XML files, along
with 200 scenario pictures and a YAML file storing the road damage information. Here
we will create 200 scenarios.

Even though the XML files are saved under different names, these scenarios are
generated from one original scenario, the 200 scenarios share the same scenario ID,
by which different scenarios are identified, and it will cause a problem in later training.
So we have to execute a batch modification of the scenario is in these XML files to
number and distinguish them.

To check if the generated XML files comply with the CommonRoad scenario format,
CommonRoad provides a tool to validate the XML files agiant the CommonRoad
.xsd specification. Passing the validation means the XML files can be used in the
CommonRoad Reinforcement Learning framework.
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Since a reinforcement learning training/testing session involves tens of thousands of
iterations and accesses to the scenarios, it is a good idea to convert the XML files to
PICKLE format so that they will be loaded more efficiently during training and testing.
CommonRoad-RL provides tools to achieve the procedure. Then the 200 Pickle data
can be split into two folders with the ratio 7:3, separately for training and testing.

5.4 Problem formulation with Reinforcement Learning
concept

The fundamental components of Reinforcement learning are explained in section 4.1.
This section will define the details of states, actions and rewards to formulate the road
damage avoidance problem into a reinforcement learning frame.

States

For reinforcement learning, states mean what the agent needs to observe from the envi-
ronment, also named as observations. Observation space in the use case is continuous.
Various signals need to be observed to define the state of the agent. The observation
space includes ego-vehicle-related signals, goal-related signals, surrounding-related
signals and termination-related signals.

Before defining the observation space, it’s necessary to determine the vehicle model
as the agent of the reinforcement learning problem and create the state space of the
vehicle. A kinematic single-track model is sufficient for our use case. The model is
demonstrated in Fig. 5.7, in which, ICR means Instantaneous Center of Rotation, vh is
longitudinal velocity, δ represents the steering angle and ψ represents the heading, the
parameter l describes the wheelbase.

In the model, two wheels are connected by a rigid link, differential constraints are
considered, while tire slip is disregarded. The differential equations of the model are:

ẋ = vh cos(ψ)

ẏ = vh sin(ψ)

ψ̇ =
vh
l
tan(δ)

v̇h = along

δ̇ = vδ

(5.1)
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Figure 5.7: Kinematic single-track model [71]

To write the kinematic single-track model in state-space form of ẋ = Ax + Bu, the
following state variables are introduced:

x1 = x, x2 = y, x3 = δ, x4 = vh, x5 = ψ (5.2)

The input variables are

u1 = vδ, u2 = along . (5.3)

Inserting the state and input variables into (6.1) results in

ẋ1 = x4 cos (x5) ,

ẋ2 = x4 sin (x5) ,

ẋ3 = fsteer (x3, u1) ,

ẋ4 = facc (x4, u2) ,

ẋ5 =
x4
l
tan (x3) .

(5.4)

The parameters are provided of CommonRoad according to vehicle type. In the use
case, the Ford Escort is chosen as the agent. The constraints on steering, velocity, and
acceleration are also defined in the function fsteer (x3, u1) and function facc (x4, u2) in
the documentation [71].
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Table 5.2: Ego-related Observation Space [60]
variable name variable

type
variable description

v_ego float absolute velocity of ego vehicle
a_ego float absolute acceleration of ego vehi-

cle
steering_angle float steering angle of ego vehicle
heading float ego vehicle orientation
global_turn_rate float global turn rate of ego vehicle
left_marker_distance float lateral distance from ego vehicle

center to left marker of ego lanelet
right_marker_distance float lateral distance from ego vehi-

cle center to right marker of ego
lanelet

left_road_edge_distance float lateral distance from ego vehicle
center to left road network bound

right_road_edge_distance float lateral distance from ego vehicle
center to right road network bound

lat_offset float from ego vehicle center to ego
lanelet center line

Motion planning based on the kinematic models can ensure the kinematic feasibility
of the solution. Setting velocity constraints can ensure the vehicle obeys the speed
limit. Through the single-track model, and combining the parameters of the distance
between tires, the tire tracks can be easily calculated. To determine if the ego vehicle
drives in the lane, the distance between the vehicle and the lane marker, as well as the
distance between the vehicle and the road network bound is also required. The lateral
offset from the center line of the lane is also included in the observation space. Table
5.2 lists the ego-related signals in the observation space.

Besides the ego vehicle states, its relative positions with goal and surroundings are
included in the observation space. In the goal-related observation space, not only the
longitudinal and lateral distances from the ego vehicle to the goal region, but also the
statically and dynamically extrapolated longitudinal distances are comprised. In the
surrounding-related observation space, the longitudinal and lateral distances between
the ego-vehicle and road damage, along with the damage severity information are
observed. There are also two boolean signals observed for further rewards design: if
the vehicle changed the lane and if there is a collision with damage happened. The
goal-related observation space and surrounding-related observation space are shown
in Table 5.3 and Table 5.4.
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Table 5.3: Goal-related Observation Space[60]
variable name variable

type
variable description

distance_goal_long float relative longitudinal distance (eu-
clidean) from ego vehicle to goal

distance_goal_lat float relative lateral distance (euclidean)
from ego vehicle to goal

distance_goal_long_ extrap-
olated_static

list[float] relative longitudinal distances (eu-
clidean) from statically extrapo-
lated ego vehicle positions to goal

distance_goal_long_ extrap-
olated_dynamic

list[float] relative longitudinal distances (eu-
clidean) from dynamically extrapo-
lated ego vehicle positions to goal

Table 5.4: Surrounding-related Observation Space
variable name variable

type
variable description

distance_damage_long float relative longitudinal distance (eu-
clidean) from ego vehicle to next
road damage

distance_damage_lat float relative lateral distance (euclidean)
from ego vehicle to next road dam-
age

damage_severity float severity level of next road damage
is_damage_collision boolean if ego vehicle tire moves over road

damage
is_lane_changing boolean if ego vehicle changed the lane

55



5 Technical realization

Table 5.5: Termination-related Observation Space[60]
variable name variable

type
variable description

remaining_steps int number of time steps left for cur-
rent episode

is_goal_reached boolean identifier to determine if ego vehi-
cle reaches goal region

is_off_road boolean identifier to determine if ego vehi-
cle is off road

is_collision boolean identifier to determine if ego vehi-
cle collides with road damage of
severity level 3

is_time_out boolean identifier to determine if maximum
episode length is met

is_friction_violation boolean identifier to determine if ego vehi-
cle violates the friction constraints

Table 5.6: Action space[60]
No variable type description
0 float ego vehicle acceleration
1 float ego vehicle steering angle rate

In the end, the termination flags are considered. They indicate when the episode should
be determined. The termination-related observation space comprises, the remaining
steps, if the goal is reached, if the vehicle is off the road, if there is a collision with road
damage of severity level 3, if there is a time-out, if there is friction violation. They are
listed in Table 5.5

Actions

In our use case, the anticipated behaviors of the agent are acceleration/deceleration
and steering. According to the vehicle model, the differential constraints are also
considered. Therefore, steering angle rate rather than steering angle is more suitable for
the use case to maintain the continuity of steering action. The action space consisting
of ego vehicle acceleration and ego vehicle steering angle rate is shown in Table 5.6.

Rewards

In the field of reinforcement learning, rewards are numerical signals that guide the agent
in learning desirable actions based on the optimal policy. In the automotive industry,
the so-called Key Performance Indicators (KPIs) are used to objectively evaluate the
quality of the application. We can also use the KPI method to define the reward. Some
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KIPs can be proposed for this problem: If the acceleration and steering is above the
people’s comfort zone, if there is a collision, if there is a lane changing, if the vehicle
reaches the goal region. But only with these sparse rewards, the RL agent can barely
learn and may just take no action.

In reinforcement learning (RL), it’s typically assumed that the agent only observes the
sequence of instantaneous rewards that correspond to the state-action trajectory. A
sparse reward refers to a reward function that is zero in most of its domain, and only
gives positive values to very few state, action, and future state transitions. For an RL
agent, if the environment has a sparse reward function, it means that the agent won’t
get any feedback about whether the instantaneous actions that it takes are good or bad.
A dense reward refers to a reward function that gives value to most of the transitions,
thus the agent gets feedback at almost every time step. To mark the importance of the
events like reaching the goal or colliding the severe road damage, in the problem, the
hybrid reward function is adopted.

The sparse part of the reward function is a sum of the rewards for the following
indicators:

• If the agent reaches the goal?

• If there is a collision with road damage with severity level 3?

• If the agent drives off the road?

• If there is a time-out?

• If there is friction violation?

• If there is a lane-changing?

• Tire rolls over the road damage with severity level 1 and level 2.

These events correspond to huge positive or negative rewards, depending on if it
contributes to the goal of the use case. For example, the agent should be encouraged
to reach the goal, so the reward for a goal-reaching should be a huge positive number.
While a collision with very severe road damage should be avoided, so the reward for
the collision is a huge negative number. For the last indicator, a reward coefficient
is introduced to multiply with damage severity levels, to differentiate the impact from
different severity levels.

The dense part of the reward is divided into a goal-related part and a comfort-related
part. The goal-related part is a multiplication of a coefficient and the normalized dis-
tance to the goal. The comfort-related part considers the impact of steering angle rate
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and acceleration on passengers’ comfort. Two coefficients are designed to separately
multiply steering angle rate and acceleration.

The hybrid reward function can be formed like below:

Hybrid reward = reward_goal_reached + reward_collision + reward_off_road

+ reward_time_out + reward_friction_violation

+ reward_lane_changing

+ reward_tire_collision_coefficient ∗ damage_severity

+ reward_goal_distance_coefficient ∗ normalized_distance_to_goal

+ reward_steering_angle_rate_coefficient ∗ steering_angle_rate

+ reward_acceleration_coefficient ∗ a_ego
(5.5)

The reward function can be modified through the training process according to the
performance to optimize the solution.

To summarize the reinforcement learning concept in road damage avoidance problem,
the interaction between the agent and the environment can be described in Fig. 5.8.

Figure 5.8: Road Damage Avoidance in RL frame

At this point, the training dataset is prepared and the reinforcement learning concept
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has been built. The implementation can be executed in Commonroad-RL or by building
the custom environment using Stable Baseline3.
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6 Conclusion

In this chapter, the results of the work are summarized once again. The outlook is also
described.

6.1 Summary

The thesis first introduces the road damage problem that further research hasn’t been
pursued. The ESRIUM project, which is also the grounding point of this thesis, is also
briefly introduced in this chapter.

Although this thesis only considers motion planning based on known road damage
information, the road damage avoidance problem is not a separate topic and it needs
the support of many other techniques. So the technical background including general
autonomous driving system, computer vision in detecting road damages and I2V tech-
niques are then explained and relevant literature is reviewed. For the motion planning
problem itself, the recent research on motion planning algorithms and reinforcement
learning is also summarized in this chapter.

And then conventional motion planning algorithms are explained and compared to
reinforcement learning algorithms. From the benchmark, we can see the advantages
of the RL methods in the road damage avoidance problem. The fourth chapter explains
the details of the reinforcement learning concept to provide the theoretical basis for the
technical realization.

Finally, the process of scenario design and training dataset preparation is described.
The abstract problem formulation of the road damage problem is also accomplished in
the reinforcement learning frame.

To summarize, the thesis explains the necessity of research in road damage, review
the literature on motion planning algorithms and explore the possibility of using rein-
forcement learning methods in road damage avoidance problem. Since there is no
standard system of Reinforcement learning theory yet, the elaboration of reinforcement
learning in this thesis is summarized and sorted out from several sources.

Although this paper implements the formulation of the road damage avoidance problem
into a reinforcement learning problem and set up the entire training framework, only a
specific training implementation and test results can determine whether reinforcement
learning methods are superior for this problem. To achieve the goal, besides the RL
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training, implementation of A* search algorithm, CL-RRT algorithm, potential field and
convex optimization should also be executed. Due to the specialty of the use case, a
standard frame cannot be directly used, specified algorithm frames should be built. For
example, in the A* search algorithm, we cannot directly use the obstacle avoidance
frame in our problem, considering different severity levels, the heuristic function needs
to be modified to fit our problem. The above implementation needs a lot of work, so
this thesis only compares them from a theoretical aspect. But in the road damage
avoidance problem itself, these implementations are worth executing.

6.2 Prospect

Road damage, with the existing technical support like computer vision and I2V, will
become a more worthy and researchable topic in the future. The massive data from
the Road Damage Detection Challenge (GRDDC) can be valuable learning resources,
which allow other machine learning algorithms demanding massive data to be used in
the problem. Hybrid methods can also be researched to compensate for each other’s
shortcomings.

The interplay of reinforcement learning with other engineering and science is exciting.
Of all forms of machine learning, reinforcement learning is the closest to the kind
of learning done by humans and other animals, and many of the core algorithms of
reinforcement learning were originally inspired by biological learning systems. And
reinforcement learning has also provided influential models for psychology and neu-
roscience. Reinforcement learning is part of a decades-long trend toward greater
integration of artificial intelligence and machine learning with statistics, optimization,
and other mathematical disciplines. For example, the ability of some reinforcement
learning methods to use parametric approximators to learn solves the classic "curse of
dimensionality" problem in operations research and control theory. We can expect to
apply reinforcement learning to more interdisciplinary research, and even, in the future,
it may become a tool to mimic human thinking and be commonly used on human tasks.

Reinforcement learning is also part of the larger trend of AI returning to simple general
principles. Modern AI has a vast array of special-purpose tricks, procedures, and
heuristics to achieve intelligence by feeding in enough relevant facts to make the
machine think. But approaches based on simple general principles will no longer rely
on huge scale datasets and thus can be applied more to simply different problems.

Another problem is the robustness of reinforcement learning algorithms. Supervised
learning and deep learning have been iterated over decades and have more robust
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algorithms, which allow the training process to yield more reliable results without relying
on a lot of experience. Nowadays, reinforcement learning tools are still relatively crude,
and researchers still need to rely on a lot of practical experience and professional
intuition to get the desired results. Robust reinforcement learning algorithms can lower
the threshold for using reinforcement learning, making it a more pervasive tool for
greater use.
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