ESRIUNA SAFE AND EFFICIENT ROADS

.....

This project has received funding from the European GNSS Agency under the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004181.

The content of this presentation reflects only the author's view. Neither the European Commission nor the GSA is responsible for any use that may be made of the information it contains.

24/09/2021

Workshop on Traffic Infrastructure Mapping and Automated Damage Assessment Systems

Full Name Company logo

Use Cases and Requirements Analysis

Wolfgang Schildorfer, Florian Hofbauer, Manuel Walch, Matthias Neubauer University of Applied Sciences Upper Austria

Use Cases – Relation to other WP and Tasks

Methodological approach

- 1. Use case analysis based on the DoW: Development of four application scenarios including potential target groups, application prerequisites, challenges.
- 2. Validation within a bilateral workshop with key customer ASFINAG (road operator)
- 3. Internal review of updated version with all project partners: Developing consensus within the diverse and multidisciplinary team and taking advantage of multiple perspectives along the value chain
- 4. External confirmation of relevance of use cases from ASECAP¹

¹Also stated in ASECAP's C-ITS Manifesto (cf. ASECAP 2021, p.6, URL: <u>http://www.asecap.com/images/News/PDF/2021_ASECAP_CITS_MANIFESTO_final.pdf</u>)

EUC-001: AI-based road damage prediction to support enhanced road maintenance planning (Figure)

EUC-001: AI-based road damage prediction to support enhanced road maintenance planning

UC Description:

Based on the developed road sensing and damage mapping system, a road wear map layer utilizing AI-based road damage predictions is to be developed and provided to the road operator. Based on the predicted onset of road damages the road operator can set-up a derived predictive road maintenance and action plan to proactively reduce more severe road damages.

Target Group: Road Operators

Preliminary Pain Points	USP	Expected Benefits
 High costs due to late detection of road damages Long-term construction sites (decrease in traffic efficiency and safety, higher CO₂ emissions) High costs and impacts due to safety risk and caused incidents Traffic jams and related customer complaints 	 Road maintenance service is safe (due to high validity of the service) delightful (due to helping reduce CO₂ emissions) and effective (due to using the right tools and cost efficient measures when it comes to road maintenance actions) 	 Enhanced road maintenance planning Reduction of overall maintenance activities Reduction of CO₂ emissions (avoidance of construction zones and therefore traffic jams)

EUC-001: AI-based road damage prediction to support enhanced road maintenance planning – Additional Information (1/2)

EUC-001: AI-based road damage prediction to support enhanced road maintenance planning – Additional Information (2/2)

Challenges/Barriers/Open	Is historical information on traffic density (including mix of traffic speed lanes used) available for
issues	prediction of surface degradation? Is it planned to be added?
100000	 Is road weather related historical information available?
	Are road materials and structure information taken into account?
	Are from swark and structure information taken into account:
	• Are framework conditions taken into account that cause impulsive driving manoeuvres such as sudden broking and thus load to increased read wear (a.g., Speed reductions zone, on, and off remps, etc.)?
To reat/Evoluction matric	Draking and thus lead to increased road wear (e.g., Speed reductions zone, on- and on-ramps, etc.)?
larget/Evaluation metric	Quantity and quality of identified damages (type, classification, total percentage distribution)
	Precision of the identified damages
	 Context information regarding road damages (asphalt type, traffic frequency (vehicles/min), weather etc.)
	 Time and cost / km for operating the sensor vehicle
	 Saved cost and CO2-emissions due to avoiding construction works
	• Expected type of maintenance activities for the identified damage including information on e.g. length,
	duration, time of the day, or time of the year
	 Expected traffic volumes during the maintenance activity (by vehicle type)
	 Historic data about accident on this road stretch and for similar construction zones
	 Travel times on the stretch without road works
Expected benefits	Allows enhanced road maintenance planning which could lead to a reduction of overall maintenance activities
	and therefore to a possible reduction of CO2 emissions (avoidance of construction zones which lead to traffic
	jams and increased CO2-emissions). It has to be investigated if an increased number of lane changes leads to
	more incidents and respective increased travel time.
Preliminary Unique Selling	Our road maintenance service is safe (due to high validity of the service), delightful (due to helping to make
Proposition (USP)	our world better with regard to CO2-emission reduction) and effective (due to using the right tools and cost
	efficient measures when it comes to road maintenance actions leading to safer roads).

EUC-002: Routing Recommendations within and between lanes based on the road wear map, provided via C-ITS messages (Figure)

X

FSRIU

EUC-002: Routing Recommendations within and between lanes based on the road wear map, provided via C-ITS messages

Based on very early damage prediction, the road operator can derive an enhanced action plan to proactively avoid severe road damages. One of the actions is to provide EGNSS-based lane change or in-lane offset recommendations for the drivers and end users in general, in order to avoid severe road damages and critical safety-related situations (vehicle side damage avoidance). User compliance-based incentive concepts (e.g. tolling) will be investigated in this scope.

Target Group: End users (drivers of automated trucks and passenger cars), OEMs, logistics operators

	Preliminary Pain Points	USP	Expected Benefits
•	Additional costs for on-board units (for receiving C-ITS messages)	 With this service, all the end users feel safe (due to high validity of the service) 	 Prevention of severe road damage
•	Specific vehicle characteristics are not available for broadcast services - only generic recommendations may be provided	 relaxed (due to user-friendly service integration) and effective (due to getting benefits 	 Equal / gradual utilisation of the road to prevent unequal road- surface wear
•	Safety risk due to road damages	from complying with road operators' recommendations)	
•	Safety risk due to driver distraction from complex C-ITS messages	,	

EUC-002: Routing Recommendations within and between lanes based on the road wear map, provided via C-ITS messages – Additional Information (1/2)

EUC-002: Routing Recommendations within and between lanes based on the road wear map, provided via C-ITS messages – Additional Information (2/2)

Challenges/Barriers/Open issues	 How do lane changes based on routing recommendations affect road safety and road efficiency? How do we inform other road users about potential lane changes, especially those who cannot receive C-ITS messages? What are the conditions for lane change manoeuvres (e.g. number of lanes, traffic density, weather conditions, etc.)? How do recommendations within a lane take into consideration the different size of vehicles?
Target/Evaluation metric	 Quantity and quality of C-ITS messages (routing recommendations) received in the VIF demo-car (including accuracy, latency) Deviation between recommended trajectory and driven trajectory of the VIF demo-car Quantity and quality of received C-ITS messages (routing recommendations) in fleets during test week (including accuracy, latency) Monitoring of drivers' behaviour (percentage of vehicles following the recommendations like lane changes). Deviation between recommended trajectory and driven trajectory of the driver (during test week) Users' acceptance of routing recommendation-related C-ITS messages (qualitative assessment) Reasons for ignoring C-ITS message: e.g. not enough space for manoeuvre, message unclear, benefit unclear.
Expected benefits	Prevention of severe road damage by proactively set measures in a very early phase of the expected road damage; equal/gradual utilisation of the road to prevent unequal road-surface wear. (e.g. recommended lane changes and randomised lane offsets via C-ITS).
Preliminary Unique Selling Proposition (USP)	With this service, all the end users, particularly the logistics operators and truck drivers feel safe (due to high validity of the service), relaxed (due to user-friendly service integration), and effective (due to getting benefits from complying with road operators' recommendations)

EUC-003: C-ITS Message 'GNSS-correction data' provision (Figure)

EUC-003: C-ITS Message 'GNSS-correction data' provision

UC Description:

The road operator provides EGNSS-correction data to end users for enhancing the positioning accuracy of end users' vehicles. Furthermore, vehicles carrying the sensor array uses that service

Target Group: End users (drivers of automated trucks and passenger cars) and vehicle provider (carrying sensor array), OEMs for optimising their ADAS systems (e.g. lane assist, C-ACC)

	Preliminary Pain Points	USP	Expected Benefits
•	Loss of high-precision positioning and therefore ADAS systems are not working correctly	We provide supportive localisation information to your infrastructure operations so that your customers feel	Precise positioning allows following the lane change or in- lane offset recommendations and
•	Increased safety risk due to loss of high-precision positioning	safe (due to high validity of the service) with high convenience	 Providing the EGNSS correction
•	Liability costs in case of accidents		data via C-ITS acts as an additional source of correction information and adds redundancy for requirements of functional safety for automated mobility.

EUC-003: C-ITS Message 'GNSS-correction data' provision – Additional Information

Short description	The road operator provides EGNSS-correction data to end users for enhancing the positioning accuracy of
	end users' vehicles. Furthermore, vehicles carrying the sensor array uses that service
Preliminary Pain points	 Loss of high-precision positioning and therefore ADAS systems are not working correctly
	 Increased safety risk due to loss of high-precision positioning
	Liability costs in case of accidents
Preliminary Target group	End users (drivers of automated trucks and passenger cars) and vehicle provider (carrying sensor array),
	OEMs for optimising their ADAS systems (e.g. lane assist, C-ACC)
Key assumptions for successful	 GNSS-correction information available for road operator
demonstration during the project	 C-ITS messages available for providing the EGNSS-correction data
	C-ITS infrastructure (road side units) available
	Automated demo-car (VIF) available (receiving C-ITS messages, triggering automated actions)
Involved stakeholder roles	EGNSS data/service provider, road operator (Traffic Management, C-ITS provider), end user of this
	service (e.g. logistics provider, truck driver, automated vehicle), OEMs
Realization Prerequisites (physical	Physical infrastructure:
infrastructure, digital infrastructure,	 C-ITS road side unit and on-board unit
data availability)	Automated demo-car (VIF)
	Digital infrastructure: Traffic management center providing C-ITS messages
	Data availability: EGNSS-correction data
Challenges/Barriers/Open issues	What to do in case of failure, i.e. if no correction data can be provided?
Target/Evaluation metric	Quantity and quality of C-ITS message (EGNSS-correction data) received in the VIF demo-car
	 Reduction of vehicle position error in meters, compared to uncorrected GNSS position
	Better positioning but also better lane level map matching of the ego vehicle.
Expected benefits	 Precise positioning of vehicles allows following the lane change or in-lane offset recommendations
	issued by the road operator and proactive avoidance of road wear geo-located in the road wear map
	layer (if available in the vehicle).
	 Providing the EGNSS correction data via C-ITS acts as an additional source of correction information
	and adds redundancy for requirements of functional safety for automated mobility.
Preliminary Unique Selling	We provide supportive localisation information to your infrastructure operations so that your customers
Proposition (USP)	feel safe (due to high validity of the service) with high convenience.

EUC-004: Wear-map content provision (Figure)

EUC-004: Wear-map content provision

UC Description:

Based on the developed road sensing and damage mapping system a road wear map is provided to e.g. navigation service providers, OEMs and road operators to form a basis for convenient routing decisions

Target Group: End users (drivers of automated trucks and passenger cars)

 Increase driver convenience and traffic safety by proactive avoidance of road wear geo- located in the road wear map
located in the road wear map
layer.

EUC-004: Wear-map content provision – Additional Information

Short description	Based on the developed road sensing and damage mapping system a road wear map is provided to e.g.	
	navigation service providers, OEMs and road operators to form a basis for convenient routing decisions	
Preliminary Pain points	Traffic safety risks due to construction works	
	Traffic safety risks due to damages on the road surface	
Preliminary Target group	End users (drivers of automated trucks and passenger cars)	
Key assumptions for	 Road sensing vehicle equipped with EGNSS supporting system available 	
successful demonstration	 Machine learning algorithm to quickly identify damages via the road sensing vehicle available 	
during the project	Map-layer with identified damages available	
Involved stakeholder roles	EGNSS data/service provider, ground truth data system provider, road wear sensor system provider, data	
	Management platform provider, data service platform provider (wear map service provider), OEMS, MINOS,	
Realization Prerequisites	Navigation service providers	
(physical infrastructure	Road sections with damages	
digital infractructure, data	ute data • ECNSS supported sonsing system	
	Road sensing vehicle	
availability)		
	Machine learning software	
	 Map software for integrating map layer with identified damages 	
	• Map software for integrating map-rayer with identified damages	
	Data availability. • Pood surface data	
issues	suitable for different data services types (C-ITS, TPEG2, DATEX II - for DATEX Light, NDS volatile data, etc.)	
Target/Evaluation metric	Precision of the wear map (including detected damages)	
5	 Frequency of map-updates needed for long-term road assessment (including what kind of data needs to be updated) 	
	 Integrability of the wear map into target customers' operating systems 	
Expected benefits	Increase driver convenience and traffic safety by proactive avoidance of road wear geo-located in the road	
	wear map layer.	
Preliminary Unique Selling Proposition (USP)	We support map providers to make the life of drivers safer and more convenient.	

*

FC

Poll questions

- 1. How would you rate the importance of GNSS-based use cases (like we do in ESRIUM) for the predictive road maintenance?
- 2. How would you rate the acceptance rate (compliance) of truck drivers to C-ITS messages like "recommended lane" provided by a road operator?
- 3. How would you rate the importance of benefits (e.g. reducing tolling) for truck drivers' acceptance of C-ITS messages like "recommended lane" provided by a road operator?

ESRIUM SAFE AND EFFICIENT ROADS

.....

